cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A285871 Decimal expansion of 1/sqrt(2 - sqrt(2)) (reciprocal of A101464).

Original entry on oeis.org

1, 3, 0, 6, 5, 6, 2, 9, 6, 4, 8, 7, 6, 3, 7, 6, 5, 2, 7, 8, 5, 6, 6, 4, 3, 1, 7, 3, 4, 2, 7, 1, 8, 7, 1, 5, 3, 5, 8, 3, 7, 6, 1, 1, 8, 8, 3, 4, 9, 2, 6, 9, 5, 2, 7, 5, 4, 8, 8, 9, 8, 3, 6, 6, 9, 0, 8, 0, 8, 1, 0, 4, 1, 4, 6, 1, 1, 9, 2, 0, 5, 0, 9, 5, 1, 8, 5, 3, 7, 2, 0, 1, 9, 2, 6, 2, 8, 1, 4
Offset: 1

Views

Author

Wolfdieter Lang, May 11 2017

Keywords

Comments

This number is the length ratio of the radius of a circle and the side of the inscribed octagon.
In the Corbalán reference, pp. 61-62, this number is called Cordoba number or Cordoba proportion, attributed to the architect Rafael de la Hoz (1924-2000), who used the rectangle with this proportion to explain the structure of the Mihrab of Cordoba.

Examples

			1.30656296487637652785664317342718715358376118834926952754889836690808104146...
		

References

  • Fernando Corbalán, Der goldene Schnitt, Librero, 2017. Original: La proportión áurea, RBA Contenidos Editoriales y Audiovisuales S. A. U., 2010. English: The golden Ratio, 2012, RBA Coleccionables.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1/Sqrt(2 - Sqrt(2)); // G. C. Greubel, Oct 10 2018
  • Maple
    evalf((sqrt(2-sqrt(2)))^(-1),100); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    RealDigits[1/Sqrt[2 - Sqrt[2]], 10, 100][[1]] (* Indranil Ghosh, May 11 2017 *)
  • PARI
    default(realprecision, 100); 1/sqrt(2 - sqrt(2)) \\ G. C. Greubel, Oct 10 2018
    
  • Python
    from sympy import N, sqrt
    print(N(1/sqrt(2 - sqrt(2)), 100)) # Indranil Ghosh, May 11 2017
    

Formula

Equals 1/(2*sin(Pi/8)) = 1/A101464.
Equals Product_{k>=0} (1 + (-1)^k/(4*k+2)). - Amiram Eldar, Aug 07 2020
The minimal polynomial is 2*x^4 - 4*x^2 + 1. - Joerg Arndt, May 10 2021
Equals Sum_{n>=0} binomial(2*n - 1/2, -1/2)/2^n. - Antonio Graciá Llorente, Nov 13 2024

Extensions

Offset and example corrected by Amiram Eldar, Aug 07 2020

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A047621 Numbers that are congruent to {3, 5} mod 8.

Original entry on oeis.org

3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93, 99, 101, 107, 109, 115, 117, 123, 125, 131, 133, 139, 141, 147, 149, 155, 157, 163, 165, 171, 173, 179, 181, 187, 189, 195, 197, 203, 205, 211, 213, 219, 221, 227, 229
Offset: 1

Views

Author

Keywords

Comments

Numbers k for which Jacobi symbol J(2,k) = -1, so 2 (as well as 2^k) is not a square mod k. - Antti Karttunen, Aug 27 2005, corrected by Jianing Song, Nov 05 2019, see also A329095.
Numbers n whose multiplicative order modulo 2^k is 2^(k - 2) for k >= 4. For k = 3, the numbers whose multiplicative order modulo 8 is 2 are in sequence A047484. - Jianing Song, Apr 29 2018

Crossrefs

Row 1 of A112070. Complement of A047522 relative to A005408. Primes in this sequence: A003629.
Subsequence of A329095.

Programs

  • GAP
    a:=[3];; for n in [2..60] do a[n]:=8*n-a[n-1]-8; od; a; # Muniru A Asiru, Dec 04 2018
  • Haskell
    a047621 n = a047621_list !! (n-1)
    a047621_list = 3 : 5 : map (+ 8) a047621_list
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 5, 11}, 100] (* Jean-François Alcover, Jul 31 2018 *)

Formula

a(n) = 8*n - a(n-1) - 8 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3 + 2*x + 3*x^2) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
A089911(3*a(n)) = 10. - Reinhard Zumkeller, Jul 05 2013
a(n) = 8*floor((n - 1)/2) + 4 + (-1)^n. - Gary Detlefs, Dec 03 2018
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
a(n) = 4*n - 2 - (-1)^n.
E.g.f.: 3 - (2 - 4*x)*exp(x) - exp(-x). (End)
a(n + 2) = a(n) + 8. - David A. Corneth, Dec 03 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/8) (1/A144981).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/8) (A101464). (End)

A179260 Decimal expansion of the connective constant of the honeycomb lattice.

Original entry on oeis.org

1, 8, 4, 7, 7, 5, 9, 0, 6, 5, 0, 2, 2, 5, 7, 3, 5, 1, 2, 2, 5, 6, 3, 6, 6, 3, 7, 8, 7, 9, 3, 5, 7, 6, 5, 7, 3, 6, 4, 4, 8, 3, 3, 2, 5, 1, 7, 2, 7, 2, 8, 4, 9, 7, 2, 2, 3, 0, 1, 9, 5, 4, 6, 2, 5, 6, 1, 0, 7, 0, 0, 1, 5, 0, 0, 2, 2, 0, 4, 7, 1, 7, 4, 2, 9, 6, 7, 9, 8, 6, 9, 7, 0, 0, 6, 8, 9, 1, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Jul 06 2010

Keywords

Comments

This is the case n=8 of the ratio Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)). - Bruno Berselli, Dec 13 2012
An algebraic integer of degree 4: largest root of x^4 - 4x^2 + 2. - Charles R Greathouse IV, Nov 05 2014
This number is also the length ratio of the shortest diagonal (not counting the side) of the octagon and the side. This ratio is A121601 for the longest diagonal. - Wolfdieter Lang, May 11 2017 [corrected Oct 28 2020]
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 3, pp. 69-74. See also the comments in A302711 with the Romanus link and his Exemplum tertium.
This problem is equivalent to R(45, 2*sin(Pi/120)) = 2*sin(3*Pi/8) with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/120) see A302715. (End)

Examples

			1.84775906502257351225636637879357657364483325172728497223019546256107001500...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 333.
  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
  • Neal Madras and Gordon Slade, Self-avoiding walks, Probability and its Applications, Birkhäuser Boston, Inc. Boston, MA, 1993.

Crossrefs

Programs

Formula

sqrt(2+sqrt(2)) = (2/1)(6/7)(10/9)(14/15)(18/17)(22/23)... (see Sondow-Yi 2010).
Equals 1/A154739. - R. J. Mathar, Jul 11 2010
Equals 2*A144981. - Paul Muljadi, Aug 23 2010
log (A001668(n)) ~ n log k where k = sqrt(2+sqrt(2)). - Charles R Greathouse IV, Nov 08 2013
2*cos(Pi/8) = sqrt(2+sqrt(2)). See a remark on the smallest diagonal in the octagon above. - Wolfdieter Lang, May 11 2017
Equals also 2*sin(3*Pi/8). See the comment on van Roomen's third problem above. - Wolfdieter Lang, Apr 29 2018
Equals i^(1/4) + i^(-1/4). - Gary W. Adamson, Jul 06 2022
Equals Product_{k>=0} ((8*k + 2)*(8*k + 6))/((8*k + 1)*(8*k + 7)). - Antonio Graciá Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A047522(k)). - Amiram Eldar, Nov 22 2024

A182168 Decimal expansion of imaginary part of i^(1/4).

Original entry on oeis.org

3, 8, 2, 6, 8, 3, 4, 3, 2, 3, 6, 5, 0, 8, 9, 7, 7, 1, 7, 2, 8, 4, 5, 9, 9, 8, 4, 0, 3, 0, 3, 9, 8, 8, 6, 6, 7, 6, 1, 3, 4, 4, 5, 6, 2, 4, 8, 5, 6, 2, 7, 0, 4, 1, 4, 3, 3, 8, 0, 0, 6, 3, 5, 6, 2, 7, 5, 4, 6, 0, 3, 3, 9, 6, 0, 0, 8, 9, 6, 9, 2, 2, 3, 7, 0, 1, 3, 7, 8, 5, 3, 4, 2, 2, 8, 3, 5, 4, 7, 1, 4, 8, 4, 2, 4
Offset: 0

Views

Author

Stanislav Sykora, May 16 2012

Keywords

Comments

Also sin(Pi/8) or sine of 22.5 degrees.
The real part of i^(1/4) or cos(Pi/8) is A144981.
A quartic number of denominator 2 and minimal polynomial 8*x^4 - 8*x^2 + 1. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.382683432365089771728459984...
		

Crossrefs

Cf. A144981.

Programs

Formula

Equals sqrt(2-sqrt(2)) / 2 = A101464/2. - Bernard Schott, Apr 12 2022
This^2 + A144981^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive root of 8*x^4-8*x^2+1=0. - R. J. Mathar, Aug 31 2025

A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.

Original entry on oeis.org

4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

15-gon is the first m-gon with odd composite m which is constructible (see A003401) in virtue of the fact that 15 is the product of two distinct Fermat primes (A019434). The next such case is 51-gon (m=3*17), followed by 85-gon (m=5*17), 771-gon (m=3*257), etc.
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 4, pp. 69-74. See also the comments in A302711 with a link to Romanus' book, Exemplum quaesitum.
This problem is equivalent to R(45, 2*sin(Pi/675)) = 2*sin(Pi/15), with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/675) see A302716. (End)

Examples

			0.415823381635518674203484568810250332433169521255447672814363947...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272535 (16), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/15)

Formula

Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018

A272535 Decimal expansion of the edge length of a regular 16-gon with unit circumradius.

Original entry on oeis.org

3, 9, 0, 1, 8, 0, 6, 4, 4, 0, 3, 2, 2, 5, 6, 5, 3, 5, 6, 9, 6, 5, 6, 9, 7, 3, 6, 9, 5, 4, 0, 4, 4, 4, 8, 1, 8, 5, 5, 3, 8, 3, 2, 3, 5, 5, 0, 3, 9, 0, 9, 6, 1, 5, 5, 0, 9, 0, 0, 4, 1, 7, 8, 9, 8, 9, 5, 2, 6, 6, 3, 7, 5, 7, 1, 8, 4, 9, 1, 6, 0, 4, 5, 0, 6, 5, 0, 6, 1, 8, 4, 6, 8, 1, 8, 0, 7, 6, 3, 4, 6, 1, 9, 8, 4
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Like all m-gons with m equal to a power of 2 (see A003401 and A000079), this is a constructible number.

Examples

			0.390180644032256535696569736954044481855383235503909615509004...
		

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/16], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/16)

Formula

Equals 2*sin(Pi/m) for m=16, 2*A232738. Equals also sqrt(2-sqrt(2+sqrt(2))).

A272536 Decimal expansion of the edge length of a regular 20-gon with unit circumradius.

Original entry on oeis.org

3, 1, 2, 8, 6, 8, 9, 3, 0, 0, 8, 0, 4, 6, 1, 7, 3, 8, 0, 2, 0, 2, 1, 0, 6, 3, 8, 9, 3, 4, 3, 3, 3, 7, 8, 4, 6, 2, 7, 7, 9, 9, 7, 8, 4, 1, 7, 1, 3, 2, 1, 5, 8, 0, 1, 6, 9, 2, 8, 2, 6, 9, 2, 1, 1, 5, 5, 1, 7, 5, 8, 6, 6, 1, 1, 2, 4, 7, 1, 5, 8, 6, 7, 3, 3, 9, 1, 7, 4, 5, 3, 5, 3, 6, 9, 7, 3, 7, 6, 7, 5, 0, 2, 8, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Since 20-gon is constructible (see A003401), this is a constructible number.

Examples

			0.3128689300804617380202106389343337846277997841713215801692826921...
		

Crossrefs

Cf. A003401.
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
Cf. A019818.

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/20], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/20)

Formula

Equals 2*sin(Pi/20) = 2*A019818.
Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
Equals i^(9/10) + i^(-9/10). - Gary W. Adamson, Jul 08 2022

A365164 Length of the perimeter of the regular octagon with unit circumradius.

Original entry on oeis.org

6, 1, 2, 2, 9, 3, 4, 9, 1, 7, 8, 4, 1, 4, 3, 6, 3, 4, 7, 6, 5, 5, 3, 5, 9, 7, 4, 4, 4, 8, 6, 3, 8, 1, 8, 6, 8, 1, 8, 1, 5, 1, 2, 9, 9, 9, 7, 7, 0, 0, 3, 2, 6, 6, 2, 9, 4, 0, 8, 1, 0, 1, 7, 0, 0, 4, 0, 7, 3, 6, 5, 4, 3, 3, 6, 1, 4, 3, 5, 0, 7, 5, 7, 9, 2, 2, 2, 0, 5, 6, 5, 4, 7, 6, 5, 3, 6, 7, 5, 4, 3, 7, 4, 7, 8, 8, 6, 1, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.122934917841436347655359744486...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365163 (7-gon), A365165 (9-gon), A101464 (edge length), A010466 (area).

Programs

  • Mathematica
    f[R_, s_] := 2*R*s*Sin[Pi/s]; a[n_] := RealDigits[f[1, 8], 10, n][[1]]; a[109] (* Robert P. P. McKone, Aug 24 2023 *)

Formula

Equals 8*A101464.
Showing 1-9 of 9 results.