A003680 Smallest number with 2n divisors.
2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..3300 (terms 1..1000 from T. D. Noe using A005179)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {, }][[All, 2]]; A = {#, DivisorSigma[0, #]}& /@ A005179; a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]]; a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *) mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *) With[{tbl=Table[{n,DivisorSigma[0,n]},{n,800000}]},Table[SelectFirst[tbl,#[[2]]==2k&],{k,20}]][[;;,1]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
-
PARI
a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
-
Python
from sympy import divisors def a(n): m = 4*n - 2 while len(divisors(m)) != 2*n: m += 1 return m print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021
Formula
Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004
Extensions
More terms from Jud McCranie Oct 15 1997
Comments