cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003680 Smallest number with 2n divisors.

Original entry on oeis.org

2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
Offset: 1

Views

Author

Keywords

Comments

Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
For n=1 to 5, a(n) equals second term of A008578, A007422, A162947, A048945, A030628. - Michel Marcus, Feb 04 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005179 (n), A061283 (2n-1), A118224 (at least 2n).

Programs

  • Mathematica
    A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {, }][[All, 2]];
    A = {#, DivisorSigma[0, #]}& /@ A005179;
    a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
    a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    With[{tbl=Table[{n,DivisorSigma[0,n]},{n,800000}]},Table[SelectFirst[tbl,#[[2]]==2k&],{k,20}]][[;;,1]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    from sympy import divisors
    def a(n):
      m = 4*n - 2
      while len(divisors(m)) != 2*n: m += 1
      return m
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021

Formula

Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004

Extensions

More terms from Jud McCranie Oct 15 1997