cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007018 a(n) = a(n-1)^2 + a(n-1), a(0)=1.

Original entry on oeis.org

1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, 12864938683278671740537145998360961546653259485195806
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees having nodes of outdegree 0,1,2 and such that all leaves are at level n. Example: a(2)=6 because, denoting by I a path of length 2 and by Y a Y-shaped tree with 3 edges, we have I, Y, I*I, I*Y, Y*I, Y*Y, where * denotes identification of the roots. - Emeric Deutsch, Oct 31 2002
Equivalently, the number of acyclic digraphs (dags) that unravel to a perfect binary tree of height n. - Nachum Dershowitz, Jul 03 2022
a(n) has at least n different prime factors. [Saidak]
Subsequence of squarefree numbers (A005117). - Reinhard Zumkeller, Nov 15 2004 [This has been questioned, see MathOverflow link. - Charles R Greathouse IV, Mar 30 2015]
For prime factors see A007996.
Curtiss shows that if the reciprocal sum of the multiset S = {x_1, x_2, ..., x_n} is 1, then max(S) <= a(n). - Charles R Greathouse IV, Feb 28 2007
The number of reduced ZBDDs for Boolean functions of n variables in which there is no zero sink. (ZBDDs are "zero-suppressed binary decision diagrams.") For example, a(2)=6 because of the 2-variable functions whose truth tables are 1000, 1010, 1011, 1100, 1110, 1111. - Don Knuth, Jun 04 2007
Using the methods of Aho and Sloane, Fibonacci Quarterly 11 (1973), 429-437, it is easy to show that a(n) is the integer just a tiny bit below the real number theta^{2^n}-1/2, where theta =~ 1.597910218 is the exponential of the rapidly convergent series Sum_{n>=0} log(1+1/a_n)/2^{n+1}. For example, theta^32 - 1/2 =~ 3263442.0000000383. - Don Knuth, Jun 04 2007 [Corrected by Darryl K. Nester, Jun 19 2017]
The next term has 209 digits. - Harvey P. Dale, Sep 07 2011
Urquhart shows that a(n) is the minimum size of a tableau refutation of the clauses of the complete binary tree of depth n, see pp. 432-434. - Charles R Greathouse IV, Jan 04 2013
For any positive a(0), the sequence a(n) = a(n-1) * (a(n-1) + 1) gives a constructive proof that there exists integers with at least n distinct prime factors, e.g. a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - Daniel Forgues, Mar 03 2017
Lower bound for A100016 (with equality for the first 5 terms), where a(n)+1 is replaced by nextprime(a(n)). - M. F. Hasler, May 20 2019

References

  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 94.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Lower bound for A100016.
Row sums of A122888.

Programs

  • Haskell
    a007018 n = a007018_list !! n
    a007018_list = iterate a002378 1  -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [n eq 1 select 1 else Self(n-1)^2 + Self(n-1): n in [1..10]]; // Vincenzo Librandi, May 19 2015
    
  • Maple
    A007018 := proc(n)
        option remember;
        local aprev;
        if n = 0 then
            1;
        else
            aprev := procname(n-1) ;
            aprev*(aprev+1) ;
        end if;
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    FoldList[#^2 + #1 &, 1, Range@ 8] (* Robert G. Wilson v, Jun 16 2011 *)
    NestList[#^2 + #&, 1, 10] (* Harvey P. Dale, Sep 07 2011 *)
  • Maxima
    a[1]:1$
    a[n]:=(a[n-1] + (a[n-1]^2))$
    A007018(n):=a[n]$
    makelist(A007018(n),n,1,10); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    a(n)=if(n>0,my(x=a(n-1));x^2+x,1) \\ Edited by M. F. Hasler, May 20 2019 and Jason Yuen, Mar 01 2025
    
  • Python
    from itertools import islice
    def A007018_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a *= a+1
    A007018_list = list(islice(A007018_gen(),9)) # Chai Wah Wu, Mar 19 2024

Formula

a(n) = A000058(n)-1 = A000058(n-1)^2 - A000058(n-1) = 1/(1-Sum_{jA000058(j)) where A000058 is Sylvester's sequence. - Henry Bottomley, Jul 23 2001
a(n) = floor(c^(2^n)) where c = A077125 = 1.597910218031873178338070118157... - Benoit Cloitre, Nov 06 2002
a(1)=1, a(n) = Product_{k=1..n-1} (a(k)+1). - Benoit Cloitre, Sep 13 2003
a(n) = A139145(2^(n+1) - 1). - Reinhard Zumkeller, Apr 10 2008
If an (additional) initial 1 is inserted, a(n) = Sum_{kFranklin T. Adams-Watters, Jun 11 2009
a(n+1) = a(n)-th oblong (or promic, pronic, or heteromecic) numbers (A002378). a(n+1) = A002378(a(n)) = A002378(a(n-1)) * (A002378(a(n-1)) + 1). - Jaroslav Krizek, Sep 13 2009
a(n) = A053631(n)/2. - Martin Ettl, Nov 08 2012
Sum_{n>=0} (-1)^n/a(n) = A118227. - Amiram Eldar, Oct 29 2020
Sum_{n>=0} 1/a(n) = A371321. - Amiram Eldar, Mar 19 2024

A081477 Complement of A086377.

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 102, 104, 106, 108, 109, 111, 113, 114, 116, 118
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A003687.
Is A086377 the sequence of positions of 1 in A189687? - Clark Kimberling, Apr 25 2011
The answer to Kimberling's question is: yes. See the Bosma-Dekking-Steiner paper. - Michel Dekking, Oct 14 2018

Crossrefs

Programs

  • Mathematica
    t = Nest[Flatten[# /. {0->{0,1,1}, 1->{0,1}}] &, {0}, 5] (*A189687*)
    f[n_] := t[[n]]
    Flatten[Position[t, 0]] (* A086377 conjectured *)
    Flatten[Position[t, 1]] (* A081477 conjectured *)
    s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;
    Table[s[n], {n, 1, 120}] (*A189688*)
    (* Clark Kimberling, Apr 25 2011 *)

Formula

Conjectures from Clark Kimberling, Aug 03 2022: (Start)
[a(n)*r] = n + [n*r] for n >= 1, where r = sqrt(2) and [ ] = floor.
{a(n)*sqrt(2)} > 1/2 if n is in A120753, where { } = fractional part; otherwise n is in A120752. (End)

Extensions

Name corrected by Michel Dekking, Jan 04 2019

A081478 Consider the mapping f(a/b) = (a - b)/(ab). Taking a = 2 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 2/1,1/2,-1/2,-3/-2,-1/6,... Sequence contains the denominators.

Original entry on oeis.org

1, 2, 2, -2, 6, -6, 42, -42, 1806, -1806, 3263442, -3263442, 10650056950806, -10650056950806, 113423713055421844361000442, -113423713055421844361000442, 12864938683278671740537145998360961546653259485195806
Offset: 1

Views

Author

Amarnath Murthy, Mar 24 2003

Keywords

Comments

The mapping f(a/b) = (a + b)/(a - b). Taking a = 2 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the periodic sequence 2/1,3/1,2/1,3/1,...

Crossrefs

A003687 gives the numerators.
Cf. A007018.

Programs

  • Mathematica
    Last /@ NestList[{(#1 - #2), #1 #2} & @@ # &, {2, 1}, 16] (* Michael De Vlieger, Sep 04 2016 *)
  • Sage
    # Variant with first four terms slightly different. Absolute values.
    def A081478_abs():
        x, y = 1, 2
        yield x
        while True:
           yield x
           x, y = x * y, x//y + 1
    a = A081478_abs(); print([next(a) for i in range(17)])  # Peter Luschny, Dec 17 2015

Formula

a(2n-1) = A007018(n-1), a(2n) = -A007018(n-1) for n >= 2. - Jianing Song, Oct 10 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Showing 1-3 of 3 results.