cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366834 Square array read by descending antidiagonals: (-1)^n*T(n,k)/n! is the coefficient of x^(2*n+1) in the Taylor expansion of the k-th iteration of sin(x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 12, 1, 0, 1, 4, 33, 128, 1, 0, 1, 5, 64, 731, 1872, 1, 0, 1, 6, 105, 2160, 25857, 37600, 1, 0, 1, 7, 156, 4765, 121600, 1311379, 990784, 1, 0, 1, 8, 217, 8896, 368145, 10138880, 89060065, 32333824, 1, 0, 1, 9, 288, 14903, 873936, 42807605, 1162426880, 7778778091, 1272660224, 1, 0
Offset: 0

Views

Author

Jianing Song, Oct 25 2023

Keywords

Comments

T(n,k)/n! is the coefficient of x^(2*n+1) in the Taylor expansion of the k-th iteration of sinh(x). This is most easily seen from the relation -i*sin(...sin(sin(sin(i*x)))...) = -i*sin(...sin(sin(i*sinh(x)))...) = -i*sin(...sin(i*sinh(sinh(x)))...) = ... = sinh(...sinh(sinh(sinh(x)))...).

Examples

			G.f.s of the first few rows:
n = 0: 1/(1-x);
n = 1: x/(1-x)^2;
n = 2: x/(1-x)^2 + 10*x^2/(1-x)^3;
n = 3: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4:
n = 4: x/(1-x)^2 + 1870*x^2/(1-x)^3 + 20244*x^3/(1-x)^4 + 29400*x^4/(1-x)^5;
n = 5: x/(1-x)^2 + 37598*x^2/(1-x)^3 + 1198582*x^3/(1-x)^4 + 5118960*x^4/(1-x)^5 + 4851000*x^5/(1-x)^6.
The explicit formulas for the first few rows:
T(0,k) = binomial(k,0) = 1 for k = 0, 0 for k > 0;
T(1,k) = binomial(k,1) = k;
T(2,k) = binomial(k,1) + 10*binomial(k,2) = 5*k^2 - 4*k;
T(3,k) = binomial(k,1) + 126*binomial(k,2) + 350*binomial(k,3) = (175/3)*k^3 - 112*k^2 + (164/3)*k;
T(4,k) = binomial(k,1) + 1870*binomial(k,2) + 20244*binomial(k,3) + 29400*binomial(k,4) = 1225*k^4 - 3976*k^3 + 4288*k^2 - 1536*k;
T(5,k) = binomial(k,1) + 37598*binomial(k,2) + 1198582*binomial(k,3) + 5118960*binomial(k,4) + 4851000*binomial(k,5) = 40425*k^5 - 190960*k^4 + (1004696/3)*k^3 - 255552*k^2 + (213568/3)*k.
Table of terms:
Row 0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Row 1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Row 2: 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460
Row 3: 0, 1, 128, 731, 2160, 4765, 8896, 14903, 23136, 33945, 47680
Row 4: 0, 1, 1872, 25857, 121600, 368145, 873936, 1776817, 3244032, 5472225, 8687440
Row 5: 0, 1, 37600, 1311379, 10138880, 42807605, 130426016, 323774535, 698156544, 1358249385, 2442955360
Row 6: 0, 1, 990784, 89060065, 1162426880, 6937805945, 27344158016, 83303826249, 212901058560, 478937915985, 977877567040
Row 7: 0, 1, 32333824, 7778778091, 174394695680, 1487589904205, 7634965431296, 28668866786679, 87104014381056, 227079171721785, 527214112015360
Row 8: 0, 1, 1272660224, 849264442881, 33044097597440, 406373544070945, 2731282112246016, 12688038285458529, 45949019179646976, 139088689115885505, 367745105831952640
Row 9: 0, 1, 59527313920, 113234181108643, 7701145601933312, 137461463840219237, 1215573962763120128, 7008667055272520967, 30322784763588771840, 106757902382656031049, 321859857651846029824
Row 10: 0, 1, 3252626013184, 18073465545032353, 2162675327569362944, 56311245536706922889, 657730167421332884480, 4719958813316934631353, 24445625744089126797312, 100254353682662263787313, 345053755346367061654528
Demonstration of terms:
sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + 1872*x^9/9! - 37600*x^11/11! + ...;
sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + 25857*x^9/9! - 1311379*x^11/11! + ...;
sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + 121600*x^9/9! - 10138880*x^11/11! + ....
		

Crossrefs

Cf. A051624 (row n=2), A366827 (row n=3), A003712 (column k=2 signed), A003715 (column k=3 signed).

Programs

  • PARI
    A160562(n,k) = (-1)^k / (2*k+1)! * sum(j=0, k, (-1)^j * binomial(2*k+1, k-j) * (2*j+1)^(2*n+1)) / 2^(2*k)
    coeff_of_n_gfs(n) = my(M=matid(1)); for(k=1, n, M = matconcat([concat(M, matrix(k, 1)); concat(0, matrix(1, k, i, j, A160562(k, j-1))*M)])); M \\ The lower triangle matrix (C(i,j))_{0<=j<=i<=n}
    T_mat(n,k) = coeff_of_n_gfs(n)*matrix(n+1, k+1, i, j, binomial(j-1,i-1)) \\ gives T(i,j) for i=0..n and j=0..k

Formula

T(0,0) = 1, T(n,0) = 0 for n >= 1; T(n,k) = Sum_{i=0..n} A160562(n,i)*T(i,k-1) for k >= 1, where A160562(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1). Note that this is not very efficient to calculate the terms.
A more efficient way would be to calculate the g.f. for each row: the g.f. of the n-th row is C(n,0)/(1-x) + C(n,1)*x/(1-x)^2 + ... + C(n,n)*x^n/(1-x)^(n+1), where C(0,0) = 1, C(n,0) = 0 for n >= 1; C(n,k) = A160562(n,k-1)*C(k-1,k-1) + ... + A160562(n,n-1)*C(n-1,k-1) for n >= k >= 1, so we have T(n,k) = C(n,0)*binomial(k,0) + C(n,1)*binomial(k,1) + ... + C(n,n)*binomial(k,n). See my pdf in the link section for the proof.
From the formula above we see that the n-th row is a degree-n polynomial of k with leading coefficient C(n,n)/n!. We have C(n,n) = A160562(n,n-1)*C(n-1,n-1) = A000447(n)*C(n-1,n-1) for n >= 1, so it can be shown that C(n,n)/n! = n! * A285018(n)/A285019(n).

A212261 Array A(i,j) read by antidiagonals: A(i,j) is the (2i-1)-th derivative of sin(sin(sin(...sin(x)))) nested j times evaluated at 0.

Original entry on oeis.org

1, 1, -1, 1, -2, 1, 1, -3, 12, -1, 1, -4, 33, -128, 1, 1, -5, 64, -731, 1872, -1, 1, -6, 105, -2160, 25857, -37600, 1, 1, -7, 156, -4765, 121600, -1311379, 990784, -1, 1, -8, 217, -8896, 368145, -10138880, 89060065, -32333824, 1
Offset: 1

Views

Author

John M. Campbell, May 12 2012

Keywords

Comments

The determinant of the n X n such matrix has a closed form given in the formula section (and the Mathematica code below).
Rows appear to be given by polynomials (see formula section).

Examples

			Evaluate the fifth derivative of sin(sin(sin(x))) at 0, which is 33. So the (3,3) entry of the array is 33. The array begins as:
|  1      1        1         1         1          1 |
| -1     -2       -3        -4        -5         -6 |
|  1     12       33        64       105        156 |
| -1   -128     -731     -2160     -4765      -8896 |
|  1   1872    25857    121600    368145     873936 |
| -1 -37600 -1311379 -10138880 -42807605 -130426016 |
		

Crossrefs

Programs

  • Maple
    A:= (i, j)-> (D@@(2*i-1))(sin@@j)(0):
    seq(seq(A(i, 1+d-i), i=1..d), d=1..9); # Alois P. Heinz, May 14 2012
  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[D[Nest[Sin, x, #2], {x, 2*#1 - 1}] /. x -> 0 &, {a, b}];
    Print[A[7, 7] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 8, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
       AppendTo[Table1, First[Take[First[Take[A[7, 7], {i, i}]], {j, j}]]];
       j = j - 1;
       i = i + 1];
      AppendTo[Table2, Table1];
      k++];
    Print[Flatten[Table2]]
    Print[Table[Det[A[n, n]], {n, 1, 7}]];
    Print[Table[(
      I^(n + n^2) 2^(-(1/12) + n^2) 3^(n/2 - n^2/2)
        Glaisher^3 (-(1/\[Pi]))^
       n BarnesG[1/2 + n] BarnesG[1 + n] BarnesG[3/2 + n])/E^(1/4), {n, 1, 7}]]

Formula

A(i,j) = ((d/dx)^(2i-1) sin^j(x))_{x=0}.
Let A_n denote the n X n such matrix. Then:
det(A_n)=(i^(n + n^2) 2^(-(1/12) + n^2) 3^(n/2 - n^2/2) G^3 (-(1/pi))^n B(1/2 + n) B(1 + n) B(3/2 + n))/e^(1/4), where B is the Barnes G-function and G is the Glaisher-Kinkelin constant (and i is the imaginary unit). (This can be shown by evaluating recurrence relations for det(A_n)). See Mathematica code below.
First row: 1.
Second row: -x.
Third row: x (5 x - 4).
Fourth row: -(1/3) x (164 + 7 x (-48 + 25 x)).
Fifth row: (8 - 7 x)^2 x (-24 + 25 x).
Sixth row: -(1/3) x (213568 - 766656 x + 1004696 x^2 - 572880 x^3 + 121275 x^4).
Seventh row: 1/3 x (-14371328 + 65012064 x - 111160192 x^2 + 91291200 x^3 - 36552516 x^4 + 5780775 x^5).
Second column: A003712.
Third column: A003715.

A302452 a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sinh(x).

Original entry on oeis.org

1, 2, 33, 2160, 368145, 130426016, 83303826249, 87104014381056, 139088689115885505, 321859857651846029824, 1036109938469605247521009, 4490275483028481600517832704, 25503692273369769781221175069521, 185636732310716855091866841134243840, 1699077450890747555020338066545506541145
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sin(x) (absolute values).

Examples

			The initial coefficients of successive iterations of e.g.f. A(x) = sinh(x) (odd powers only) are as follows:
n = 1: (1), 1,    1,     1,       1,  ... e.g.f. A(x)
n = 2:  1, (2),  12,   128,    1872,  ... e.g.f. A(A(x))
n = 3:  1,  3,  (33),  731,   25857,  ... e.g.f. A(A(A(x)))
n = 4:  1,  4,   64, (2160)  121600,  ... e.g.f. A(A(A(A(x))))
n = 5:  1,  5,  105,  4765, (368145), ... e.g.f. A(A(A(A(A(x)))))
...
More explicitly, the successive iterations of e.g.f. A(x) = sinh(x) begin:
sinh(x) = x/1! + x^3/3! + x^5/5! + x^7/7! + x^9/9! + ...
sinh(sinh(x)) = x/1! + 2*x^3/3! + 12*x^5/5! + 128*x^7/7! + 1872*x^9/9! + ...
sinh(sinh(sinh(x))) = x/1! + 3*x^3/3! + 33*x^5/5! + 731*x^7/7! + 25857*x^9/9! + ...
sinh(sinh(sinh(sinh(x)))) = x/1! + 4*x^3/3! + 64*x^5/5! + 2160*x^7/7! + 121600*x^9/9! + ...
sinh(sinh(sinh(sinh(sinh(x))))) = x/1! + 5*x^3/3! + 105*x^5/5! + 4765*x^7/7! + 368145*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)! SeriesCoefficient[Nest[Function[x, Sinh[x]], x, n], {x, 0, 2 n - 1}], {n, 15}]
Showing 1-3 of 3 results.