cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003717 Expansion of e.g.f. sin(tanh(x)) (odd powers only).

Original entry on oeis.org

1, -3, 37, -959, 41641, -2693691, 241586893, -28607094455, 4315903789009, -807258131578995, 183184249105857781, -49548882107764546223, 15742588857552887269753, -5802682207845642276301995
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Sin[ Tanh[ x ] ] (* Odd Part *)
    With[{nn = 60}, Take[CoefficientList[Series[Sin[Tanh[x]], {x, 0, nn}], x] Range[0, nn - 1]!, {2, -1, 2}]] (* Vincenzo Librandi, Apr 11 2014 *)
  • Maxima
    a(n):=(-1)^(n-1)*b(2*n-1);
    b(n):=sum((1-(-1)^k)/k!*((-1)^(n-k)+1)*sum(binomial(j-1,k-1)*j!*2^(n-j-2)*(-1)^((n+k)/2+j)*stirling2(n,j),j,k,n),k,1,n); /* Vladimir Kruchinin, Apr 21 2011 */

Formula

a(n) = (-1)^(n-1)*b(2*n-1), b(n) = sum(k=1..n,(1-(-1)^k)/k!*((-1)^(n-k)+1)* sum(j=k..n, binomial(j-1,k-1)*j!*2^(n-j-2)*(-1)^((n+k)/2+j)* Stirling2(n,j))). - Vladimir Kruchinin, Apr 21 2011

Extensions

Name edited by Michel Marcus, Jan 28 2018