A006229
Expansion of e.g.f. exp( tan x ).
Original entry on oeis.org
1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
function A006229_list(len::Int)
len <= 0 && return BigInt[]
T = zeros(BigInt, len, len); T[1,1] = 1
S = Array(BigInt, len); S[1] = 1
for n in 2:len
T[n,n] = 1
for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
S[n] = sum(T[n,k] for k in 2:n)
end
S end
println(A006229_list(24)) # Peter Luschny, Apr 27 2017
-
With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
-
a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
A296854
Expansion of e.g.f. sinh(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, 18, 227, 4565, 126648, 4620805, 213569269, 12165013026, 835868220455, 68093897815361, 6483538063860336, 712877916658802713, 89586864207214060057, 12753583150716684461970, 2040805972702652020364603, 364567588100855831300341565
Offset: 0
sinh(x*tan(x/2)) = x^2/2! + x^4/4! + 18*x^6/6! + 227*x^8/8! + 4565*x^10/10! + ...
-
nmax = 17; Table[(CoefficientList[Series[Sinh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296680
Expansion of e.g.f. arcsin(arctanh(x)) (odd powers only).
Original entry on oeis.org
1, 3, 53, 2359, 198953, 27412011, 5625656541, 1613676694239, 617477049181521, 304167421243513683, 187546541676182230149, 141512355477854459198343, 128265950128144233675269241, 137512081213377707268891639675, 172108297920263623816775456321325
Offset: 0
arcsin(arctanh(x)) = x/1! + 3*x^3/3! + 53*x^5/5! + 2359*x^7/7! + 198953*x^9/9! + 27412011*x^11/11! + ...
-
S:= series(arcsin(arctanh(x)),x,52):
seq(coeff(S,x,n)*n!,n=1..51,2); # Robert Israel, Dec 18 2017
-
nmax = 15; Table[(CoefficientList[Series[ArcSin[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 15; Table[(CoefficientList[Series[-I Log[(I/2) (Log[1 + x] - Log[1 - x]) + Sqrt[1 - (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A013522
Numerator of [x^(2n+1)] in the Taylor expansion sinh(cosec(x)-cotan(x))= x/2 +x^3/16 +37*x^5/3840 +137*x^7/92160 +41641*x^9/185794560 + 3887*x^11/117964800 +...
Original entry on oeis.org
1, 1, 37, 137, 41641, 3887, 241586893, 5721418891, 4315903789009, 2832484672207, 183184249105857781, 2154299222076719401, 1431144441595717024523, 386845480523042818420133, 21349170171172632123182767, 38112676874301043070814698873, 25659732417088795005806537367241
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
-
Numerator[Take[CoefficientList[Series[Sinh[Csc[x] - Cot[x]], {x,0,45}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 12 2016 *)
A098146
First odd semiprime > 10^n.
Original entry on oeis.org
9, 15, 111, 1003, 10001, 100001, 1000001, 10000001, 100000001, 1000000013, 10000000003, 100000000007, 1000000000007, 10000000000015, 100000000000013, 1000000000000003, 10000000000000003, 100000000000000015
Offset: 0
a(0)=9 because 9=3*3 is the first odd semiprime following 10^0=1.
a(13) = 10000000000015 = 5*2000000000003.
Cf.
A046315 (odd semiprimes),
A098147(n)=a(n)-10^n continuation of this sequence,
A003717 (smallest n-digit prime).
-
osp[n_]:=Module[{k=1},While[PrimeOmega[n+k]!=2,k=k+2];n+k]; Join[{9}, Table[osp[10^i],{i,20}]] (* Harvey P. Dale, Jan 17 2012 *)
-
print1(9,","); for(n=1,10,forstep(i=10^n+1,10^(n+1)-1,2,f=factor(i); ms=matsize(f); if((ms[1]==1&&f[1,2]==2)||(ms[1]==2&&f[1,2]==1&&f[2,2]==1),print1(i,","); break))) /* Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 21 2006 */
-
from sympy import factorint, nextprime
def is_semiprime(n): return sum(e for e in factorint(n).values()) == 2
def next_odd_semiprime(n):
nxt = n + 1 + n%2
while not is_semiprime(nxt): nxt += 2
return nxt
def a(n): return next_odd_semiprime(10**n)
print([a(n) for n in range(20)]) # Michael S. Branicky, Sep 15 2021
Showing 1-5 of 5 results.
Comments