cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006229 Expansion of e.g.f. exp( tan x ).

Original entry on oeis.org

1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059419 and unsigned A111593.

Programs

  • Julia
    function A006229_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
            S[n] = sum(T[n,k] for k in 2:n)
        end
    S end
    println(A006229_list(24)) # Peter Luschny, Apr 27 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
  • Maxima
    a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = Sum_{i=0..(n-1)/2} binomial(n-1,2*i)*z(i+1)*a(n-2*i-1), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015 [corrected by Jason Yuen, Dec 29 2024]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A296854 Expansion of e.g.f. sinh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 18, 227, 4565, 126648, 4620805, 213569269, 12165013026, 835868220455, 68093897815361, 6483538063860336, 712877916658802713, 89586864207214060057, 12753583150716684461970, 2040805972702652020364603, 364567588100855831300341565
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			sinh(x*tan(x/2)) = x^2/2! + x^4/4! + 18*x^6/6! + 227*x^8/8! + 4565*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Sinh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sinh(x*tan(x/2)).

A296680 Expansion of e.g.f. arcsin(arctanh(x)) (odd powers only).

Original entry on oeis.org

1, 3, 53, 2359, 198953, 27412011, 5625656541, 1613676694239, 617477049181521, 304167421243513683, 187546541676182230149, 141512355477854459198343, 128265950128144233675269241, 137512081213377707268891639675, 172108297920263623816775456321325
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Examples

			arcsin(arctanh(x)) = x/1! + 3*x^3/3! + 53*x^5/5! + 2359*x^7/7! + 198953*x^9/9! + 27412011*x^11/11! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(arcsin(arctanh(x)),x,52):
    seq(coeff(S,x,n)*n!,n=1..51,2); # Robert Israel, Dec 18 2017
  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcSin[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 15; Table[(CoefficientList[Series[-I Log[(I/2) (Log[1 + x] - Log[1 - x]) + Sqrt[1 - (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: arcsinh(arctan(x)) (odd powers only, absolute values).
E.g.f.: -i*log((i/2)*(log(1 + x) - log(1 - x)) + sqrt(1 - (log(1 + x) - log(1 - x))^2/4)), where i is the imaginary unit (odd powers only).

A013522 Numerator of [x^(2n+1)] in the Taylor expansion sinh(cosec(x)-cotan(x))= x/2 +x^3/16 +37*x^5/3840 +137*x^7/92160 +41641*x^9/185794560 + 3887*x^11/117964800 +...

Original entry on oeis.org

1, 1, 37, 137, 41641, 3887, 241586893, 5721418891, 4315903789009, 2832484672207, 183184249105857781, 2154299222076719401, 1431144441595717024523, 386845480523042818420133, 21349170171172632123182767, 38112676874301043070814698873, 25659732417088795005806537367241
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

Apparently a bisection of A047691.
The numerators in the e.g.f. of x/2, sinh(cosec(x)-cotan(x)) = x/(2^1*1!) +3*x^3/(2^3*3!) +37*x^5/(2^5*5!) +959*x^7/(2^7*7!) +41641*x^9/(2^9*9!)+.. are apparently covered by the absolute values of A003717.

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[Sinh[Csc[x] - Cot[x]], {x,0,45}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 12 2016 *)

Extensions

Name edited by R. J. Mathar, Dec 19 2011

A098146 First odd semiprime > 10^n.

Original entry on oeis.org

9, 15, 111, 1003, 10001, 100001, 1000001, 10000001, 100000001, 1000000013, 10000000003, 100000000007, 1000000000007, 10000000000015, 100000000000013, 1000000000000003, 10000000000000003, 100000000000000015
Offset: 0

Views

Author

Hugo Pfoertner, Aug 28 2004

Keywords

Examples

			a(0)=9 because 9=3*3 is the first odd semiprime following 10^0=1.
a(13) = 10000000000015 = 5*2000000000003.
		

Crossrefs

Cf. A046315 (odd semiprimes), A098147(n)=a(n)-10^n continuation of this sequence, A003717 (smallest n-digit prime).

Programs

  • Mathematica
    osp[n_]:=Module[{k=1},While[PrimeOmega[n+k]!=2,k=k+2];n+k]; Join[{9}, Table[osp[10^i],{i,20}]] (* Harvey P. Dale, Jan 17 2012 *)
  • PARI
    print1(9,","); for(n=1,10,forstep(i=10^n+1,10^(n+1)-1,2,f=factor(i); ms=matsize(f); if((ms[1]==1&&f[1,2]==2)||(ms[1]==2&&f[1,2]==1&&f[2,2]==1),print1(i,","); break))) /* Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 21 2006 */
    
  • Python
    from sympy import factorint, nextprime
    def is_semiprime(n): return sum(e for e in factorint(n).values()) == 2
    def next_odd_semiprime(n):
        nxt = n + 1 + n%2
        while not is_semiprime(nxt): nxt += 2
        return nxt
    def a(n): return next_odd_semiprime(10**n)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Sep 15 2021
Showing 1-5 of 5 results.