cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A173958 Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1

Views

Author

Alois P. Heinz, Nov 26 2010

Keywords

Comments

Every row and every column of the array is a divisibility sequence, i.e., the terms satisfy the property that if n divides m then a(n) divides a(m) provided a(n) > 0. This follows from the representation of the elements of the array as a resultant. - Peter Bala, May 01 2014

Examples

			Square array A(n,k) begins:
  1,    2,      3,         4,           5,  ...
  1,   12,     75,       384,        1805,  ...
  1,   70,   1728,     31500,      508805,  ...
  1,  408,  39675,   2558976,   140503005,  ...
  1, 2378, 910803, 207746836, 38720000000,  ...
		

Crossrefs

Rows n=1-2 give: A000027, A006235.
Main diagonal gives A252767.
Cf. A156308.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(n, m) local M, i, j;
         if m=1 then 1 else
          M:= Matrix(n*m, shape=symmetric);
          for i to n do
            for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od;
            M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1
          od;
          for i to n-1 do
            for j to m do M[m*(i-1)+j, m*i+j]:=-1 od
          od;
          for i to n*m do
            M[i,i]:= -add(M[i,j], j=1..n*m)
          od;
          Determinant(DeleteColumn(DeleteRow(M, 1), 1))
         fi
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..9);
    # Crude Maple program from N. J. A. Sloane, May 27 2012:
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1))))));
    # Alternative program using the resultant:
    for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
  • Mathematica
    t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)

Formula

A(n,k) = m*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1) [Kreweras]. - From N. J. A. Sloane, May 27 2012
Let T(n,x) and U(n,x) denote the Chebyshev polynomials of the first and second kind respectively. Let R(n,x) = 2*( T(n,(x + 2)/2) - 1 )/x (the row polynomials of A156308). Then the (n,k)-th element of the array equals k times the resultant (R(k,x), U(n-1,(2 - x)/2)). - Peter Bala, May 01 2014 [Corrected by Pontus von Brömssen, Apr 08 2025]

A143699 a(n) = 19*a(n-1) - 41*a(n-2) + 19*a(n-3) - a(n-4).

Original entry on oeis.org

0, 1, 19, 319, 5301, 88000, 1460701, 24245719, 402446619, 6680076601, 110880352000, 1840465787401, 30549274537419, 507077165538919, 8416803858813901, 139707705280792000, 2318961358994380101
Offset: 0

Views

Author

N. J. A. Sloane, based on email from R. K. Guy, Feb 08 2009

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
A003733 = 5 * (A143699)^2. - R. K. Guy, Mar 11 2010
The sequence is the case P1 = 19, P2 = 39, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

Crossrefs

Programs

  • Magma
    I:=[0,1,19,319]; [n le 4 select I[n] else 19*Self(n-1) -41*Self(n-2) +19*Self(n-3) -Self(n-4): n in [1..30]]; // G. C. Greubel, May 31 2021
    
  • Mathematica
    LinearRecurrence[{19,-41,19,-1}, {0,1,19,319}, 20] (* Jean-François Alcover, Dec 12 2016 *)
  • PARI
    {a(n) = n = abs(n); polcoeff( x*(1-x^2)/(1 -19*x +41*x^2 -19*x^3 +x^4) + x*O(x^n), n)} \\ Michael Somos, Feb 24 2009
    
  • Sage
    def A143699_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x^2)/(1 -19*x +41*x^2 -19*x^3 +x^4) ).list()
    A143699_list(30) # G. C. Greubel, May 31 2021

Formula

Equals sqrt(A003733(n)/5).
G.f.: x*(1+x)*(1-x)/(1 - 19*x + 41*x^2 - 19*x^3 + x^4). - R. J. Mathar, Feb 09 2009
a(-n) = a(n). - Michael Somos, Feb 24 2009
a(n) = (r1^n + r2^n - r3^n - r4^n) / s1 where s1 = sqrt(205), s2 = sqrt(550 + 38*s1), s3 = 36 * sqrt(5) / s2, r1 = (19 + s1 + s2) / 4, r2 = 1/r1, r3 = (19 - s1 + s3) / 4, r4 = 1/r3. - Michael Somos, Feb 12 2012
From Peter Bala, Apr 03 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), n >= 1, where alpha = (1/4)*(19 + sqrt(205)), beta = (1/4)*(19 - sqrt(205)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n)= U(n-1, (sqrt(5) - 9)/4)*U(n-1, -(sqrt(5) + 9)/4) for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -39/4; 1, 19/2]. See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A158880 Number of spanning trees in C_6 X P_n.

Original entry on oeis.org

6, 8100, 7741440, 7138643400, 6551815840350, 6009209192448000, 5511006731579419434, 5054037303588059379600, 4634949992739663836897280, 4250612670512943969574312500, 3898145031429828405122837863554
Offset: 1

Views

Author

Alois P. Heinz, Mar 28 2009

Keywords

Comments

A linear divisibility sequence of order 18. - Peter Bala, May 02 2014

Crossrefs

Programs

  • Maple
    a:= n-> 6* (Matrix(1,18, (i,j)-> -sign(j-10) *[0, 1, 1350, 1290240, 1189773900, 1091969306725, 1001534865408000, 918501121929903239, 842339550598009896600, 772491665456610639482880][1+abs(j-10)]). Matrix(18, (i,j)-> if i=j-1 then 1 elif j=1 then [842608511100, -639641521152, 276457068288, -65829977967, 8292106368, -524839680, 16393554, -232704, 1152, -1][1+abs(i-9)] else 0 fi)^n) [1,10]: seq(a(n), n=1..15);

Formula

See program.
a(n) = 6*U(n-1,3/2)^2*U(n-1,5/2)^2*U(n-1,3) = 6*A001906(n)^2*A004254(n)^2*A001109(n), where U(n,x) is a Chebyshev polynomial of the second kind. - Peter Bala, May 02 2014

A158898 Number of spanning trees in C_7 X P_n.

Original entry on oeis.org

7, 35287, 113742727, 347251215703, 1050773495363767, 3174564739209417463, 9588099190533549457408, 28957256518828921149989143, 87453655435340440175476698487, 264117827347202707929587420182327
Offset: 1

Views

Author

Alois P. Heinz, Mar 29 2009

Keywords

Crossrefs

7th column of A173958.

Programs

  • Maple
    a:= n-> 7* (Matrix([222727, 4031, 71, 1, 0, -1, -71, -4031]). Matrix(8, (i,j)-> if i=j-1 then 1 elif j=1 then [71, -952, 3976, -6384, 3976, -952, 71, -1][i] else 0 fi)^n)[1,5]^2: seq(a(n), n=1..15);

Formula

See program.

A174001 Number of spanning trees in C_9 X P_n.

Original entry on oeis.org

9, 632025, 23057815104, 763341471963225, 24743382596536452489, 797880028172050676793600, 25694231385152383926116001849, 827147402338052897443922764419225, 26625078176206788678765153788526329856
Offset: 1

Views

Author

Alois P. Heinz, Nov 26 2010

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> 9* (Matrix([[0, 1, 265, 50616, 9209545, 1658090689, 297747101520, 53431400864569, 9586723471888105][1+abs(i)]$i=-7..8]). Matrix(16, (i, j)-> if i=j-1 then 1 elif j=1 then [[-427427424, 327381265, -146975161, 38357160, -5699687, 457655, -17736, 265, -1][1+abs(k)]$k=-7..8][i] else 0 fi)^n)[1, 8]^2: seq(a(n), n=1..20);

Formula

See program.

A174089 Number of spanning trees in C_11 X P_n.

Original entry on oeis.org

11, 10759331, 4435600730891, 1584603178322856659, 545701094921321191290251, 185861400461684004931359802019, 63080339061067311398935095930531419, 21384626538080492686675351682716886393459
Offset: 1

Views

Author

Alois P. Heinz, Nov 26 2010

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> 11* (Matrix([[0, 1, 989, 635009, 379545563, 222731206721, 129986502957277, 75726985139241127, 44091461282285910613, 25667108238650778993721, 14940759758135641310394029, 8696803311384043382138568704, 5062251640287899331740697744283, 2946638531103878161891572927216367, 1715179927870529863091149494541065923, 998372029710787510889689081784904921409, 581132402632124482558541496059410958698763][1+abs(i)]*
    signum(-i)$i=-15..16]). Matrix(32, (i, j)-> if i=j-1 then 1 elif j=1 then [[-9866686348925002518, 8584218556222705486, -5646220475933195574, 2797526034931937278, -1038052511465703094, 286230180847745070, -58096997326051905, 8585065341436957, -911803001143321, 68534901051869, -3574487862001, 125866549709, -2870938929, 39687581, -297177, 989, -1] [1+abs(k)]$k=-15..16][i] else 0 fi)^n)[1, 16]^2: seq(a(n), n=1..20);

Formula

See program.

A210813 Number of spanning trees in C_10 X P_n.

Original entry on oeis.org

10, 2620860, 321437558750, 34966152200584440, 3696387867279360000000, 387686455761449000565832500, 40568852698294278820875719309510, 4242420895960521871557351517779467760, 443556393051604632125747307341249759676250
Offset: 1

Views

Author

Alois P. Heinz, Mar 26 2012

Keywords

Comments

A linear divisibility sequence: Factorizes as a product of second-order and fourth-order linear divisibility sequences. See the Formula section. - Peter Bala, May 02 2014

Crossrefs

10th column of A173958.

Programs

  • Maple
    seq(expand(10*ChebyshevU(n-1,3)*( ChebyshevU(n-1,(7 + sqrt(5))/4)*ChebyshevU(n-1,(7 - sqrt(5))/4) )^2 * ( ChebyshevU(n-1,(9 + sqrt(5))/4)*ChebyshevU(n-1,(9 - sqrt(5))/4) )^2), n = 1..10); # Peter Bala, May 02 2014

Formula

From Peter Bala, May 02 2014: (Start)
a(n) = 10*U(n-1,3)*( U(n-1,(7 + sqrt(5))/4)*U(n-1,(7 - sqrt(5))/4) )^2 * ( U(n-1,(9 + sqrt(5))/4)*U(n-1,(9 - sqrt(5))/4) )^2, where U(n,x) is a Chebyshev polynomial of the second kind,
a(n) = 10*A001109(n) * A241606(n)^2 * A143699(n)^2 = 2*A001109(n) * A241606(n)^2 * A003733(n). (End)
Showing 1-7 of 7 results.