A173958
Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1
Square array A(n,k) begins:
1, 2, 3, 4, 5, ...
1, 12, 75, 384, 1805, ...
1, 70, 1728, 31500, 508805, ...
1, 408, 39675, 2558976, 140503005, ...
1, 2378, 910803, 207746836, 38720000000, ...
- Alois P. Heinz, Antidiagonals n = 1..60, flattened
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210. - From _N. J. A. Sloane_, May 27 2012
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Path Graph
- Wikipedia, Kirchhoff's theorem
Columns k=1-11 give:
A000012,
A001542,
A003690,
A003753,
A003733,
A158880,
A158898,
A210812,
A174001,
A210813,
A174089.
-
with(LinearAlgebra):
A:= proc(n, m) local M, i, j;
if m=1 then 1 else
M:= Matrix(n*m, shape=symmetric);
for i to n do
for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od;
M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1
od;
for i to n-1 do
for j to m do M[m*(i-1)+j, m*i+j]:=-1 od
od;
for i to n*m do
M[i,i]:= -add(M[i,j], j=1..n*m)
od;
Determinant(DeleteColumn(DeleteRow(M, 1), 1))
fi
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..9);
# Crude Maple program from N. J. A. Sloane, May 27 2012:
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1))))));
# Alternative program using the resultant:
for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
-
t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)
A143699
a(n) = 19*a(n-1) - 41*a(n-2) + 19*a(n-3) - a(n-4).
Original entry on oeis.org
0, 1, 19, 319, 5301, 88000, 1460701, 24245719, 402446619, 6680076601, 110880352000, 1840465787401, 30549274537419, 507077165538919, 8416803858813901, 139707705280792000, 2318961358994380101
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..750
- Per Hakan Lundow, Enumeration of matchings in polygraphs, Section 8.1.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (19,-41,19,-1).
-
I:=[0,1,19,319]; [n le 4 select I[n] else 19*Self(n-1) -41*Self(n-2) +19*Self(n-3) -Self(n-4): n in [1..30]]; // G. C. Greubel, May 31 2021
-
LinearRecurrence[{19,-41,19,-1}, {0,1,19,319}, 20] (* Jean-François Alcover, Dec 12 2016 *)
-
{a(n) = n = abs(n); polcoeff( x*(1-x^2)/(1 -19*x +41*x^2 -19*x^3 +x^4) + x*O(x^n), n)} \\ Michael Somos, Feb 24 2009
-
def A143699_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x^2)/(1 -19*x +41*x^2 -19*x^3 +x^4) ).list()
A143699_list(30) # G. C. Greubel, May 31 2021
A158880
Number of spanning trees in C_6 X P_n.
Original entry on oeis.org
6, 8100, 7741440, 7138643400, 6551815840350, 6009209192448000, 5511006731579419434, 5054037303588059379600, 4634949992739663836897280, 4250612670512943969574312500, 3898145031429828405122837863554
Offset: 1
-
a:= n-> 6* (Matrix(1,18, (i,j)-> -sign(j-10) *[0, 1, 1350, 1290240, 1189773900, 1091969306725, 1001534865408000, 918501121929903239, 842339550598009896600, 772491665456610639482880][1+abs(j-10)]). Matrix(18, (i,j)-> if i=j-1 then 1 elif j=1 then [842608511100, -639641521152, 276457068288, -65829977967, 8292106368, -524839680, 16393554, -232704, 1152, -1][1+abs(i-9)] else 0 fi)^n) [1,10]: seq(a(n), n=1..15);
A158898
Number of spanning trees in C_7 X P_n.
Original entry on oeis.org
7, 35287, 113742727, 347251215703, 1050773495363767, 3174564739209417463, 9588099190533549457408, 28957256518828921149989143, 87453655435340440175476698487, 264117827347202707929587420182327
Offset: 1
-
a:= n-> 7* (Matrix([222727, 4031, 71, 1, 0, -1, -71, -4031]). Matrix(8, (i,j)-> if i=j-1 then 1 elif j=1 then [71, -952, 3976, -6384, 3976, -952, 71, -1][i] else 0 fi)^n)[1,5]^2: seq(a(n), n=1..15);
A174001
Number of spanning trees in C_9 X P_n.
Original entry on oeis.org
9, 632025, 23057815104, 763341471963225, 24743382596536452489, 797880028172050676793600, 25694231385152383926116001849, 827147402338052897443922764419225, 26625078176206788678765153788526329856
Offset: 1
-
a:= n-> 9* (Matrix([[0, 1, 265, 50616, 9209545, 1658090689, 297747101520, 53431400864569, 9586723471888105][1+abs(i)]$i=-7..8]). Matrix(16, (i, j)-> if i=j-1 then 1 elif j=1 then [[-427427424, 327381265, -146975161, 38357160, -5699687, 457655, -17736, 265, -1][1+abs(k)]$k=-7..8][i] else 0 fi)^n)[1, 8]^2: seq(a(n), n=1..20);
A174089
Number of spanning trees in C_11 X P_n.
Original entry on oeis.org
11, 10759331, 4435600730891, 1584603178322856659, 545701094921321191290251, 185861400461684004931359802019, 63080339061067311398935095930531419, 21384626538080492686675351682716886393459
Offset: 1
-
a:= n-> 11* (Matrix([[0, 1, 989, 635009, 379545563, 222731206721, 129986502957277, 75726985139241127, 44091461282285910613, 25667108238650778993721, 14940759758135641310394029, 8696803311384043382138568704, 5062251640287899331740697744283, 2946638531103878161891572927216367, 1715179927870529863091149494541065923, 998372029710787510889689081784904921409, 581132402632124482558541496059410958698763][1+abs(i)]*
signum(-i)$i=-15..16]). Matrix(32, (i, j)-> if i=j-1 then 1 elif j=1 then [[-9866686348925002518, 8584218556222705486, -5646220475933195574, 2797526034931937278, -1038052511465703094, 286230180847745070, -58096997326051905, 8585065341436957, -911803001143321, 68534901051869, -3574487862001, 125866549709, -2870938929, 39687581, -297177, 989, -1] [1+abs(k)]$k=-15..16][i] else 0 fi)^n)[1, 16]^2: seq(a(n), n=1..20);
A210813
Number of spanning trees in C_10 X P_n.
Original entry on oeis.org
10, 2620860, 321437558750, 34966152200584440, 3696387867279360000000, 387686455761449000565832500, 40568852698294278820875719309510, 4242420895960521871557351517779467760, 443556393051604632125747307341249759676250
Offset: 1
-
seq(expand(10*ChebyshevU(n-1,3)*( ChebyshevU(n-1,(7 + sqrt(5))/4)*ChebyshevU(n-1,(7 - sqrt(5))/4) )^2 * ( ChebyshevU(n-1,(9 + sqrt(5))/4)*ChebyshevU(n-1,(9 - sqrt(5))/4) )^2), n = 1..10); # Peter Bala, May 02 2014
Showing 1-7 of 7 results.
Comments