A003948 Expansion of (1+x)/(1-5*x).
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750, 2861022949218750, 14305114746093750
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- F. Faase, Counting Hamiltonian cycles in product graphs
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 307
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (5).
- Index entries for sequences related to trees
Programs
-
GAP
Concatenation([1], List([1..30], n-> 6*5^(n-1) )); # G. C. Greubel, Sep 24 2019
-
Magma
[1] cat [6*5^(n-1): n in [1..30]]; // G. C. Greubel, Sep 24 2019
-
Maple
k := 6; if n = 0 then 1 else k*(k-1)^(n-1); fi;
-
Mathematica
q = 6; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 6*5^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) Join[{1},NestList[5#&,6,30]] (* Harvey P. Dale, Dec 31 2013 *) CoefficientList[Series[(1+x)/(1-5x), {x,0,30}], x] (* Michael De Vlieger, Dec 10 2016 *)
-
PARI
Vec((1+x)/(1-5*x)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2012
-
Sage
[1]+[6*5^(n-1) for n in (1..30)] # G. C. Greubel, Sep 24 2019
Formula
G.f.: (1+x)/(1-5*x).
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 4. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-6,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n) = 6*5^(n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
G.f.: 2/x - 5 - 8/(x*U(0)) where U(k)= 1 + 2/(3^k - 3^k/(2 + 1 - 12*x*3^k/(6*x*3^k + 1/U(k+1)))) ; (continued fraction, 4-step). - Sergei N. Gladkovskii, Oct 30 2012
E.g.f.: (6*exp(5*x) - 1)/5. - Ilya Gutkovskiy, Dec 10 2016
Sum_{n>=0} 1/a(n) = 29/24. - Bernard Schott, Oct 25 2021
Extensions
Definition corrected by Frans J. Faase, Feb 07 2009
Edited by N. J. A. Sloane, Dec 04 2009
Comments