A003952 Expansion of g.f.: (1+x)/(1-9*x).
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690, 1500946352969991210, 13508517176729920890
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 311
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (9).
- Index entries for sequences related to trees
Programs
-
GAP
k:=10;; Concatenation([1], List([1..20], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
-
Magma
[(10*9^n-0^n)/9: n in [0..20] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
k:= 10; seq(`if`(n = 0, 1, k*(k-1)^(n-1)), n = 0..20); # modified by G. C. Greubel, Sep 24 2019
-
Mathematica
Join[{1}, 10*9^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) Join[{1},NestList[9#&,10,20]] (* Harvey P. Dale, Sep 01 2021 *)
-
PARI
a(n)=10*9^n\9 \\ Charles R Greathouse IV, Sep 08 2011
-
Sage
k=10; [1]+[k*(k-1)^(n-1) for n in (1..20)] # G. C. Greubel, Sep 24 2019
Formula
a(n) = (10*9^n - 0^n)/9. Binomial transform is A000042. - Paul Barry, Jan 29 2004
G.f.: (1+x)/(1-9*x). - Philippe Deléham, Jan 31 2004
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 8. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (10*exp(9*x) - 1)/9. - G. C. Greubel, Sep 24 2019
Extensions
Edited by N. J. A. Sloane, Dec 04 2009
Comments