cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324905 a(n) = A007895(A003965(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 3, 3, 1, 3, 1, 3, 2, 2, 3, 2, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 3, 3, 2, 3, 1, 4, 3, 3, 2, 2, 1, 2, 1, 2, 4, 3, 3, 3, 1, 3, 2, 4, 1, 4, 1, 2, 4, 3, 3, 3, 1, 4, 3, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 3, 2, 2, 3, 3, 1, 3, 4, 3, 1, 3, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2019

Keywords

Crossrefs

Programs

  • PARI
    A003965(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = fibonacci(2+primepi(f[i, 1]))); factorback(f); };
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A324905(n) = A007895(A003965(n));

Formula

a(n) = A007895(A003965(n)).

A003980 Möbius transform of A003965.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 4, 6, 4, 12, 4, 20, 7, 8, 8, 33, 6, 54, 8, 14, 12, 88, 8, 20, 20, 18, 14, 143, 8, 232, 16, 24, 33, 28, 12, 376, 54, 40, 16, 609, 14, 986, 24, 24, 88, 1596, 16, 56, 20, 66, 40, 2583, 18, 48, 28, 108, 143, 4180, 16, 6764, 232, 42, 32, 80, 24, 10945, 66
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; q = Fibonacci[PrimePi[p] + 2]; (q-1) q^(e-1), {pe, FactorInteger[n]}]];
    Array[a, 100] (* Jean-François Alcover, Sep 29 2020 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], q); prod(i = 1, #p, q = fibonacci(primepi(p[i])+2); (q-1)*q^(e[i]-1));} \\ Amiram Eldar, Sep 14 2023

Formula

Multiplicative with a(p^e) = (q-1)q^(e-1) were q = Fibonacci(pi(p)+2) = A000045(A000720(p)+2). - David W. Wilson, Sep 01 2001
Sum_{n>=1} 1/a(n) = Product_{k>=3} (1 + Fibonacci(k)/(Fibonacci(k)-1)^2) = 9.955734312016908009501... . - Amiram Eldar, Sep 14 2023

Extensions

More terms from David W. Wilson, Aug 29 2001

A003981 Inverse Möbius transform of A003965.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 9, 15, 13, 18, 14, 28, 22, 27, 24, 31, 35, 39, 56, 42, 36, 42, 90, 60, 31, 66, 40, 63, 145, 72, 234, 63, 56, 105, 54, 91, 378, 168, 88, 90, 611, 108, 988, 98, 78, 270, 1598, 124, 73, 93, 140, 154, 2585, 120, 84, 135, 224, 435, 4182, 168, 6766, 702
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{q = Fibonacci[PrimePi[p] + 2]}, (q^(e+1)-1)/(q-1)]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 04 2023 *)

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = Fibonacci(pi(p)+1) = A000045(A000720(p)+2). - David W. Wilson, Sep 01 2001

Extensions

More terms from David W. Wilson, Aug 29 2001

A328846 The second Fibonacci based variant of arithmetic derivative: a(p) = A000045(2+A000720(p)) for prime p, a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0. Also called PrimePi-Fibonacci variant of the arithmetic derivative.

Original entry on oeis.org

0, 0, 2, 3, 8, 5, 12, 8, 24, 18, 20, 13, 36, 21, 30, 30, 64, 34, 54, 55, 60, 45, 48, 89, 96, 50, 68, 81, 88, 144, 90, 233, 160, 72, 102, 75, 144, 377, 148, 102, 160, 610, 132, 987, 140, 135, 224, 1597, 240, 112, 150, 153, 188, 2584, 216, 120, 232, 222, 346, 4181, 240, 6765, 528, 198, 384, 170, 210, 10946, 272, 336, 220, 17711, 360
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. also A003415, A258851, A328768, A328769, A328845 for other arithmetic derivatives, and also A371192 for another PrimePi-Fibonacci variant.
Cf. A374035 [= gcd(a(n), A328845(n))], A374048 (antiparity of this sequence), A374049 (indices of even terms), A374050 (of odd terms).

Programs

  • PARI
    A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1]));

Formula

a(n) = n * Sum e_j * A000045(2+A000720(p_j))/p_j for n = Product p_j^e_j.
a(A000040(n)) = A000045(2+n).
A007895(a(n)) = A328848(n).

A248692 Fully multiplicative with a(prime(i)) = 2^i; If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime A000040(k) and c_k >= 0 then a(n) = Product_{k >= 1} 2^(k*c_k).

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 16, 8, 16, 16, 32, 16, 64, 32, 32, 16, 128, 32, 256, 32, 64, 64, 512, 32, 64, 128, 64, 64, 1024, 64, 2048, 32, 128, 256, 128, 64, 4096, 512, 256, 64, 8192, 128, 16384, 128, 128, 1024, 32768, 64, 256, 128, 512, 256, 65536, 128, 256, 128, 1024, 2048, 131072, 128, 262144, 4096, 256, 64
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2014

Keywords

Comments

Equally, if n = p_i * p_j * ... * p_k, where p_i, p_j, ..., p_k are the primes A000040(i), A000040(j), ..., A000040(k) in the prime factorization of n (indices i, j, ..., k not necessarily distinct), then a(n) = 2^i * 2^j * 2^k.
a(1) = 1 (empty product).
Fully multiplicative with a(prime(i)) = 2^i.

Crossrefs

Programs

  • Maple
    a:= n-> mul((2^numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..64);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    a[n_] := Product[{p, e} = pe; (2^PrimePi[p])^e, {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    A248692(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = 2^primepi(f[i,1])); factorback(f)); \\ Antti Karttunen, Feb 01 2021

Formula

a(n) = 2^A056239(n) = A000079(A056239(n)).
Other identities. For all n >= 1:
a(A122111(n)) = a(n).
a(A000040(n)) = A000079(n).
For all n >= 0:
a(A000079(n)) = A000079(n).
a(n) = Product_{d|n} 2^A297109(d). - Antti Karttunen, Feb 01 2021
Sum_{n>=1} 1/a(n) = A065446. - Amiram Eldar, Dec 24 2022

A324900 Fully multiplicative with a(prime(k)) = Lucas(2*(k+1)) for k-th prime p, where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 7, 18, 49, 47, 126, 123, 343, 324, 329, 322, 882, 843, 861, 846, 2401, 2207, 2268, 5778, 2303, 2214, 2254, 15127, 6174, 2209, 5901, 5832, 6027, 39603, 5922, 103682, 16807, 5796, 15449, 5781, 15876, 271443, 40446, 15174, 16121, 710647, 15498, 1860498, 15778, 15228, 105889, 4870847, 43218, 15129, 15463, 39726, 41307, 12752043
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := LucasL[2*(PrimePi[p]+1)]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    A000032(n) = (fibonacci(n+1)+fibonacci(n-1));
    A324900(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = A000032(2*(1+primepi(f[i, 1])))); factorback(f); };

Formula

Fully multiplicative with a(prime(k)) = A000032(2*(k+1)) = A000045(2k+1) + A000045(2k+3).
Sum_{n>=1} 1/a(n) = 1 / Product_{k>=1} (1 - 1/Lucas(2*k+2)) = 1.278911382005... . - Amiram Eldar, Aug 28 2023

A227324 Result of changing both the prime indices and the exponents in the prime factorization of n: increment odd values, decrement even values.

Original entry on oeis.org

1, 9, 4, 3, 49, 36, 25, 81, 2, 441, 169, 12, 121, 225, 196, 27, 361, 18, 289, 147, 100, 1521, 841, 324, 7, 1089, 16, 75, 529, 1764, 1369, 729, 676, 3249, 1225, 6, 961, 2601, 484, 3969, 1849, 900, 1681, 507, 98, 7569, 2809, 108, 5, 63, 1444, 363, 2209, 144
Offset: 1

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Comments

A self-inverse permutation on the positive integers: a(a(n)) = n.

Examples

			n = 2^3 => a(n) = 3^4 = 81.
n = 3^2 => a(n) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ithprime(i[1])^i[2], i=map(x->map(y->y-1+2*irem(y, 2),
            [numtheory[pi](x[1]), x[2]]), ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; Prime[BitXor[PrimePi[p] - 1, 1] + 1]^(BitXor[e - 1, 1] + 1), {pe, FactorInteger[n]}]];
    Array[a, 100] (* Jean-François Alcover, May 31 2019, after Andrew Howroyd *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); prime( bitxor( primepi(p)-1, 1)+1)^(bitxor(e-1, 1)+1))} \\ Andrew Howroyd, Jul 23 2018
    
  • Python
    primes = [2]*2
    primes[1] = 3
    def addPrime(k):
      for p in primes:
        if k%p==0:  return
        if p*p > k:  break
      primes.append(k)
    for n in range(5, 1000000, 6):
      addPrime(n)
      addPrime(n+2)
    for n in range(1,99):
      p = 1
      j = n
      i = 0
      while j>1:
        e = 0
        while j % primes[i] == 0:
          j /= primes[i]
          e+=1
        if e:
          e = ((e-1)^1) + 1
          p*= primes[i^1]**e
        i += 1
      print(str(p), end=', ')

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p-1)*(p^6 + q(p) +(p^3-1)*q(p)^2))/(p^7 - p*q(p)^2) = 0.3120270364..., where q(p) = nextprime(p) = A151800(p) if p has an odd index, and q(p) = prevprime(p) = A151799(p) otherwise. - Amiram Eldar, Sep 17 2023

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018
Showing 1-7 of 7 results.