A003989 Triangle T from the array A(x, y) = gcd(x,y), for x >= 1, y >= 1, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 1, 2, 1
Offset: 1
Examples
The array A begins: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] [1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1] [1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4] [1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1] [1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2] [1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1] [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8] [1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1] [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1] [1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4] ... The triangle T begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 1 2: 1 1 3: 1 2 1 4: 1 1 1 1 5: 1 2 3 2 1 6: 1 1 1 1 1 1 7: 1 2 1 4 1 2 1 8: 1 1 3 1 1 3 1 1 9: 1 2 1 2 5 2 1 2 1 10: 1 1 1 1 1 1 1 1 1 1 11: 1 2 3 4 1 6 1 4 3 2 1 12: 1 1 1 1 1 1 1 1 1 1 1 1 13: 1 2 1 2 1 2 7 2 1 2 1 2 1 14: 1 1 3 1 5 3 1 1 3 5 1 3 1 1 15: 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 ... - _Wolfdieter Lang_, May 12 2018
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, ch. 4.
- D. E. Knuth, The Art of Computer Programming, Addison-Wesley, section 4.5.2.
Links
- T. D. Noe, First 100 antidiagonals of array, flattened
- Grant Cairns, Queens on Non-square Tori, El. J. Combinatorics, N6, 2001.
- Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677.
- Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, Vol. 76, No. 5 (Dec., 2003), pp. 392-394.
- P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.
- Kival Ngaokrajang, Pattern of GCD(x,y) > 1 for x and y = 1..60. Non-isolated values larger than 1 (polyomino shapes) are colored.
- Marcelo Polezzi, A Geometrical Method for Finding an Explicit Formula for the Greatest Common Divisor, The American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 445-446.
- Mihai Prunescu and Joseph Shunia, Arithmetic-term representations for the greatest common divisor, arXiv:2411.06430 [math.NT], 2024.
- H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
GAP
Flat(List([1..15],n->List([1..n],k->Gcd(n-k+1,k)))); # Muniru A Asiru, Aug 26 2018
-
Maple
a:=(n,k)->gcd(n-k+1,k): seq(seq(a(n,k),k=1..n),n=1..15); # Muniru A Asiru, Aug 26 2018
-
Mathematica
Table[ GCD[x - y + 1, y], {x, 1, 15}, {y, 1, x}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
-
PARI
{A(n, m) = gcd(n, m)}; /* Michael Somos, Jun 25 2012 */
Formula
Multiplicative in both parameters with a(p^e, m) = gcd(p^e, m). - David W. Wilson, Jun 12 2005
T(n, k) = A(n - k + 1, k) = gcd(n - k + 1, k), n >= 1, k = 1..n. See a comment above and the Mathematica program. - Wolfdieter Lang, May 12 2018
Dirichlet generating function: Sum_{n>=1} Sum_{k>=1} gcd(n, k)/n^s/k^c = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(s + c). - Mats Granvik, Feb 13 2021
The LU decomposition of this square array = A051731 * transpose(A054522) (see Johnson (2003) or Chamberland (2013), p. 1673). - Peter Bala, Oct 15 2023
Comments