A161642 Triangle (by rows): T(n,k) = A007318(n,k) / A003989(n+1,k+1).
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, 2, 1, 1, 5, 10, 10, 5, 1, 1, 3, 15, 5, 15, 3, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 4, 28, 28, 14, 28, 28, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 5, 15, 30, 210, 42, 210, 30, 15, 5, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 1 1 3: 1 3 3 1 4: 1 2 2 2 1 5: 1 5 10 10 5 1 6: 1 3 15 5 15 3 1 7: 1 7 7 35 35 7 7 1 8: 1 4 28 28 14 28 28 4 1 9: 1 9 36 84 126 126 84 36 9 1 10: 1 5 15 30 210 42 210 30 15 5 1 ... reformatted. - _Wolfdieter Lang_, Aug 24 2015
Links
- N. Alexeev, J. Andersen, R. Penner, P. Zograf, Enumeration of chord diagrams on many intervals and their non-orientable analogs, arXiv:1307.0967 [math.CO], 2013-2014 [From Tom Copeland, Jun 18 2015]
Programs
-
Mathematica
T[n_, k_] := Binomial[n, k]/GCD[n-k+1, k+1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2015, after R. J. Mathar *)
Formula
T(2n,n) = A000108(n).
T(n,k) = binomial(n,k)/A003989(n+1,k+1), 0<=k<=n. - R. J. Mathar, Sep 04 2013
Extensions
Name changed, and R. J. Mathar's formula corrected, by Wolfdieter Lang, Aug 24 2015
Comments