cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A161642 Triangle (by rows): T(n,k) = A007318(n,k) / A003989(n+1,k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, 2, 1, 1, 5, 10, 10, 5, 1, 1, 3, 15, 5, 15, 3, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 4, 28, 28, 14, 28, 28, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 5, 15, 30, 210, 42, 210, 30, 15, 5, 1
Offset: 0

Views

Author

Jason Richardson-White, Jun 15 2009

Keywords

Comments

Taking each row polynomial listed on p. 12 of the Alexeev et al. link and listing the GCD of each sub-polynomial in the indeterminate q gives the left half of this entry's symmetric/palindromic triangle. E.g., for k=6, q*s^6 + (6*q + 9*q^2) s^4 + (15*q + 15*q^2) s^2 + 5 = q*s^6 + 3*(2*q + 3*q^2)*s^4 + 15*(q + q^2)*s^2 + 5 generates (1,3,15,5). See also A055151. - Tom Copeland, Jun 18 2015

Examples

			The triangle T(n,k) begins:
n\k 0 1  2  3   4   5   6  7  8 9 10 ...
0:  1
1:  1 1
2:  1 1  1
3:  1 3  3  1
4:  1 2  2  2   1
5:  1 5 10 10   5   1
6:  1 3 15  5  15   3   1
7:  1 7  7 35  35   7   7  1
8:  1 4 28 28  14  28  28  4  1
9:  1 9 36 84 126 126  84 36  9 1
10: 1 5 15 30 210  42 210 30 15 5  1
... reformatted. - _Wolfdieter Lang_, Aug 24 2015
		

Crossrefs

Programs

Formula

T(2n,n) = A000108(n).
T(n,k) = binomial(n,k)/A003989(n+1,k+1), 0<=k<=n. - R. J. Mathar, Sep 04 2013
For first half (k <= floor(n/2)) of each palindromic row, T(n,k) = A055151(n,k) / A258820(n,k) = A007318(n,2k) * A000108(k) / A258820(n,k) = n! / [(n-2k)! k! (k+1)! A258820(n,k)]. - Tom Copeland, Jun 18 2015

Extensions

Name changed, and R. J. Mathar's formula corrected, by Wolfdieter Lang, Aug 24 2015

A204025 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of gcd(i,j) (A003989).

Original entry on oeis.org

1, -1, 1, -3, 1, 2, -8, 6, -1, 4, -20, 26, -10, 1, 16, -88, 134, -72, 15, -1, 32, -240, 496, -408, 143, -21, 1, 192, -1504, 3352, -3112, 1344, -284, 28, -1, 768, -6400, 16320, -18496, 10508, -3108, 480, -36, 1, 4608, -39936, 109952
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
  1,  -1;
  1,  -3,   1;
  2,  -8,   6,  -1;
  4, -20,  26, -10,   1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[i, j]
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6 X 6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 15}, {i, 1, n}]]    (* A003989 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204025 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A106464 Antidiagonal sums of number triangle A003989.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 6, 6, 5, 11, 6, 9, 15, 12, 8, 18, 9, 21, 22, 15, 11, 32, 20, 18, 27, 31, 14, 45, 15, 32, 36, 24, 41, 57, 18, 27, 43, 60, 20, 66, 21, 51, 72, 33, 23, 84, 42, 60, 57, 61, 26, 81, 67, 88, 64, 42, 29, 135, 30, 45, 105
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

Consider the triangle T(n, k) = A003989(n, k) = gcd(n-k+1, k), n >= 1, k = 1..n. Then a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, k+1), for n >= 0. - R. J. Mathar, May 11 2018 [adjusted to the definition of A003989. - Wolfdieter Lang, May 12 2018]

Crossrefs

Programs

  • GAP
    Flat(List([0..70],n->Sum([0..Int(n/2)],k->Gcd(n-2*k+1,k+1)))); # Muniru A Asiru, May 15 2018
  • Maple
    f:= n -> add(igcd(n-2*k+1,k+1),k=0..n/2):
    map(f, [$0..100]); # Robert Israel, May 11 2018
  • Mathematica
    Array[Sum[GCD[# - 2 k + 1, k + 1], {k, 0, Floor[#/2]}] &, 61, 0] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = sum(k=0, n\2, gcd(n-2*k+1, k+1)); \\ Michel Marcus, May 11 2018
    

Formula

a(n) = Sum_{k=0..floor(n/2)} gcd(n-2*k+1, k+1). [corrected by R. J. Mathar, May 11 2018]

Extensions

Name corrected by R. J. Mathar, May 11 2018

A106473 Rows of A003989 expressed as base 10 numbers.

Original entry on oeis.org

1, 11, 121, 1111, 12321, 111111, 1214121, 11311311, 121252121, 1111111111, 12341614321, 111111111111, 1212127212121, 11315311351311, 121412181214121, 1111111111111111, 12321612921612321, 111111111111111111
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

The all-1 entries occur at positions indexed by the n-th primes-2 (A040976). The 1's then sum to give n-th prime-1 (A006093). The sum of the digits of a(n) is given by A006579(n+1).

Formula

a(n) = sum{k=0..n, GCD(n-k+1, k+1)*10^k}.

A051731 Triangle read by rows: T(n, k) = 1 if k divides n, T(n, k) = 0 otherwise, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

T(n, k) is the number of partitions of n into k equal parts. - Omar E. Pol, Apr 21 2018
This triangle is the lower triangular array L in the LU decomposition of the square array A003989. - Peter Bala, Oct 15 2023

Examples

			The triangle T(n, k) begins:
  n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  1:  1
  2:  1  1
  3:  1  0  1
  4:  1  1  0  1
  5:  1  0  0  0  1
  6:  1  1  1  0  0  1
  7:  1  0  0  0  0  0  1
  8:  1  1  0  1  0  0  0  1
  9:  1  0  1  0  0  0  0  0  1
  10: 1  1  0  0  1  0  0  0  0  1
  11: 1  0  0  0  0  0  0  0  0  0  1
  12: 1  1  1  1  0  1  0  0  0  0  0  1
  13: 1  0  0  0  0  0  0  0  0  0  0  0  1
  14: 1  1  0  0  0  0  1  0  0  0  0  0  0  1
  15: 1  0  1  0  1  0  0  0  0  0  0  0  0  0  1
  ... Reformatted and extended. - _Wolfdieter Lang_, Nov 12 2014
		

Crossrefs

Cf. A000005 (row sums), A032741(n+2) (diagonal sums).
Cf. A243987 (partial sums per row).
Cf. A134546 (A004736 * T, matrix multiplication).
Variants: A113704, A077049, A077051.

Programs

  • Haskell
    a051731 n k = 0 ^ mod n k
    a051731_row n = a051731_tabl !! (n-1)
    a051731_tabl = map (map a000007) a048158_tabl
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Magma
    [0^(n mod k): k in [1..n], n in [1..17]]; // G. C. Greubel, Jun 22 2024
    
  • Maple
    A051731 := proc(n, k) if n mod k = 0 then 1 else 0 end if end proc:
    # R. J. Mathar, Jul 14 2012
  • Mathematica
    Flatten[Table[If[Mod[n, k] == 0, 1, 0], {n, 20}, {k, n}]]
  • PARI
    for(n=1,17,for(k=1,n,print1(!(n%k)", "))) \\ Charles R Greathouse IV, Mar 14 2012
    
  • Python
    from math import isqrt, comb
    def A051731(n): return int(not (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(n-comb(a,2))) # Chai Wah Wu, Nov 13 2024
  • Sage
    A051731_row = lambda n: [int(k.divides(n)) for k in (1..n)]
    for n in (1..17): print(A051731_row(n)) # Peter Luschny, Jan 05 2018
    

Formula

{T(n, k)*k, k=1..n} setminus {0} = divisors(n).
Sum_{k=1..n} T(n, k)*k^i = sigma[i](n), where sigma[i](n) is the sum of the i-th power of the positive divisors of n.
Sum_{k=1..n} T(n, k) = A000005(n).
Sum_{k=1..n} T(n, k)*k = A000203(n).
T(n, k) = T(n-k, k) for k <= n/2, T(n, k) = 0 for n/2 < k <= n-1, T(n, n) = 1.
Rows given by A074854 converted to binary. Example: A074854(4) = 13 = 1101_2; row 4 = 1, 1, 0, 1. - Philippe Deléham, Oct 04 2003
From Paul Barry, Dec 05 2004: (Start)
Binomial transform (product by binomial matrix) is A101508.
Columns have g.f.: x^k/(1-x^(k+1)) (k >= 0). (End)
Matrix inverse of triangle A054525, where A054525(n, k) = MoebiusMu(n/k) if k|n, 0 otherwise. - Paul D. Hanna, Jan 09 2006
From Gary W. Adamson, Apr 15 2007, May 10 2007: (Start)
Equals A129372 * A115361 as infinite lower triangular matrices.
A054525 is the inverse of this triangle (as lower triangular matrix).
This triangle * [1, 2, 3, ...] = sigma(n) (A000203).
This triangle * [1/1, 1/2, 1/3, ...] = sigma(n)/n. (End)
From Reinhard Zumkeller, Nov 01 2009: (Start)
T(n, k) = 0^(n mod k).
T(n, k) = A000007(A048158(n, k)). (End)
From Mats Granvik, Jan 26 2010, Feb 10 2010, Feb 16 2010: (Start)
T(n, k) = A172119(n) mod 2.
T(n, k) = A175105(n) mod 2.
T(n, k) = Sum_{i=1..k-1} (T(n-i, k-1) - T(n-i, k)) for k > 1 and T(n, 1) = 1.
(Jeffrey O. Shallit kindly provided a clarification along with a proof of this formula.) (End)
A049820(n) = number of zeros in n-th row. - Reinhard Zumkeller, Mar 09 2010
The determinant of this matrix where T(n, n) has been swapped with T(1,k) is equal to the n-th term of the Mobius function. - Mats Granvik, Jul 21 2012
T(n, k) = Sum_{y=1..n} Sum_{x=1..n} [GCD((x/y)*(k/n), n) = k]. - Mats Granvik, Dec 17 2023

Extensions

Edited by Peter Luschny, Oct 18 2023

A003991 Multiplication table read by antidiagonals: T(i,j) = i*j, i>=1, j>=1.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 5, 6, 10, 12, 12, 10, 6, 7, 12, 15, 16, 15, 12, 7, 8, 14, 18, 20, 20, 18, 14, 8, 9, 16, 21, 24, 25, 24, 21, 16, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12
Offset: 1

Views

Author

Keywords

Comments

Or, triangle X(n,m) = T(n-m+1,m) read by rows, in which row n gives the numbers n*1, (n-1)*2, (n-2)*3, ..., 2*(n-1), 1*n.
Radius of incircle of Pythagorean triangle with sides a=(n+1)^2-m^2, b=2*(n+1)*m and c=(n+1)^2+m^2. - Floor van Lamoen, Aug 16 2001
A permutation of A061017. - Matthew Vandermast, Feb 28 2003
In the proof of countability of rational numbers they are arranged in a square array. a(n) = p*q where p/q is the corresponding rational number as read from the array. - Amarnath Murthy, May 29 2003
Permanent of upper right n X n corner is A000442. - Marc LeBrun, Dec 11 2003
Row 12 gives total number of partridges, turtle doves, ... and drummers drumming that you have received at the end of the Twelve Days of Christmas song. - Alonso del Arte, Jun 17 2005
Consider a particle with spin S (a half-integer) and 2S+1 quantum states |m>, m = -S,-S+1,...,S-1,S. Then the matrix element = sqrt((S+m+1)(S-m)) of the spin-raising operator is the square-root of the triangular (tabl) element T(r,o) of this sequence in row r = 2S, and at offset o=2(S+m). T(r,o) is also the intensity || of the transition between the states |m> and |m+1>. For example, the five transitions between the 6 states of a spin S=5/2 particle have relative intensities 5,8,9,8,5. The total intensity of all spin 5/2 transitions (relative to spin 1/2) is 35, which is the tetrahedral number A000292(5). - Stanislav Sykora, May 26 2012
Sum_{k=0..2n-2} (-1)^k*a(A000124(2n-2)+k) = n. See A098359. - Charlie Marion, Apr 22 2013
T(n, k) is also the (k-1)-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n. - Stefano Spezia, Jul 12 2019
From Eric Lengyel, Jun 28 2023: (Start)
X(n, m+1) is the number of degrees of freedom that an m-dimensional flat geometry (point, line, plane, etc.) has when embedded in an n-dimensional Euclidean space.
X(n+1, m+1) is the number of degrees of freedom that an m-ball has when embedded in an n-dimensional Euclidean space. (End)
T(n, k) is also the average number of steps it takes a person to fall off a board of length n+k, if the person starts a random walk at k. - Ruediger Jehn, May 12 2025

Examples

			The array T starts in row n=1 with columns m>=1 as:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
   2   4   6   8  10  12  14  16  18  20  22  24  26  28  30
   3   6   9  12  15  18  21  24  27  30  33  36  39  42  45
   4   8  12  16  20  24  28  32  36  40  44  48  52  56  60
   5  10  15  20  25  30  35  40  45  50  55  60  65  70  75
   6  12  18  24  30  36  42  48  54  60  66  72  78  84  90
   7  14  21  28  35  42  49  56  63  70  77  84  91  98 105
   8  16  24  32  40  48  56  64  72  80  88  96 104 112 120
   9  18  27  36  45  54  63  72  81  90  99 108 117 126 135
  10  20  30  40  50  60  70  80  90 100 110 120 130 140 150
The triangle X(n, m) begins
   n\m  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
   1:   1
   2:   2  2
   3:   3  4  3
   4:   4  6  6  4
   5:   5  8  9  8  5
   6:   6 10 12 12 10  6
   7:   7 12 15 16 15 12  7
   8:   8 14 18 20 20 18 14  8
   9:   9 16 21 24 25 24 21 16  9
  10:  10 18 24 28 30 30 28 24 18 10
  11:  11 20 27 32 35 36 35 32 27 20 11
  12:  12 22 30 36 40 42 42 40 36 30 22 12
  13:  13 24 33 40 45 48 49 48 45 40 33 24 13
  14:  14 26 36 44 50 54 56 56 54 50 44 36 26 14
  15:  15 28 39 48 55 60 63 64 63 60 55 48 39 28 15
  ... Formatted by _Wolfdieter Lang_, Dec 02 2014
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 46.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 5-6.

Crossrefs

Main diagonal gives squares A000290. Antidiagonal sums are tetrahedral numbers A000292. See A004247 for another version.

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1): k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jul 12 2019
  • Maple
    seq(seq(i*(n-i),i=1..n-1),n=2..10); # Robert Israel, Dec 14 2015
  • Mathematica
    Table[(x + 1 - y) y, {x, 13}, {y, x}] // Flatten (* Robert G. Wilson v, Oct 06 2007 *)
    f[n_] := Table[SeriesCoefficient[E^(x + y) (1+ x - y +x*y-y^2), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11,0]] (* Stefano Spezia, Jul 12 2019 *)
  • PARI
    A003991(n,k) = if(k<1 || n<1,0,k*n)
    

Formula

Rectangular array: T(n, m) = n*m, n>=1, m>= 1.
Triangle X(n, m) = T(n-m+1, m) = (n-m+1)*m.
Sum_{i=1..n} Sum_{j=1..n} a(n) = A000537(n) [Sum of first n cubes; or n-th triangular number squared.] Determinant of all n X n contiguous subarrays of A003991 is 0. - Gerald McGarvey, Sep 26 2004
G.f. as rectangular array: x*y/((1 - x)^2*(1 - y)^2).
a(n) = i*j, where i=floor((1+sqrt(8n-7))/2), j=n-i*(i-1)/2. - Hieronymus Fischer, Aug 08 2007
As an infinite lower triangular matrix equals A000012 * A002260; where A000012 = (1; 1,1; 1,1,1; ...) and A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Oct 23 2007
As a linear array, the sequence is a(n) = A002260(n)*A004736(n) or a(n) = ((t*t+3*t+4)/2-n)*(n-(t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012
G.f. as linear array: (x - 3*x^2 + Sum_{k >= 0} ((k+2-x-(k+1)*x^2)*x^((k^2+3*k+4)/2)))/(1-x)^3. - Robert Israel, Dec 14 2015
E.g.f. as triangle: exp(x+y)*(1 + x - y + x*y - y^2). - Stefano Spezia, Jul 12 2019
a(n) = (1/2)*t + (n - 1/4)*t^2 - (1/4)*t^4 - n^2 + n, where t = floor(sqrt(2*n) + 1/2). - Ridouane Oudra, Nov 21 2020
a(n) = A003989(n) * A003990(n) = A059895(n) * A059896(n) = A059895(n)^2 * A059897(n). - Antti Karttunen, Dec 13 2021
T(n,k) = A002620(n+k) - A002620(n-k). - Michel Marcus, Jan 06 2023
T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < y < z. - Clark Kimberling, Jan 22 2024
E.g.f. as rectangular array: x*y*exp(x+y). - Stefano Spezia, Jun 27 2025

Extensions

More terms from Michael Somos

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A324198 a(n) = gcd(n, A276086(n)), where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 25, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 7, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 75, 1, 7, 1, 1, 5, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Feb 25 2019

Keywords

Crossrefs

Cf. A324583 (positions of ones), A324584 (and terms larger than one).
Cf. A371098 (odd bisection), A371099 [= a(36n+9)].
Cf. also A328231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, m]] &, 106, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    
  • PARI
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p,valuation(orgn,p))); n = n\p; p = nextprime(1+p)); (m); }; \\ Antti Karttunen, Oct 21 2019

Formula

a(n) = gcd(n, A276086(n)).
From Antti Karttunen, Oct 21 2019: (Start)
A000005(a(n)) = A327168(n).
a(A328316(n)) = A328323(n).
a(n) = A324580(n) / A328584(n).
(End)

A050873 Triangular array T read by rows: T(n,k) = gcd(n,k).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The function T(n,k) = T(k,n) is defined for all integer k,n but only the values for 1 <= k <= n as a triangular array are listed here.
For each divisor d of n, the number of d's in row n is phi(n/d). Furthermore, if {a_1, a_2, ..., a_phi(n/d)} is the set of positive integers <= n/d that are relatively prime to n/d then T(n,a_i * d) = d. - Geoffrey Critzer, Feb 22 2015
Starting with any row n and working downwards, consider the infinite rectangular array with k = 1..n. A repeating pattern occurs every A003418(n) rows. For example, n=3: A003418(3) = 6. The 6-row pattern starting with row 3 is {1,1,3}, {1,2,1}, {1,1,1}, {1,2,3}, {1,1,1}, {1,2,1}, and this pattern repeats every 6 rows, i.e., starting with rows {9,15,21,27,...}. - Bob Selcoe and Jamie Morken, Aug 02 2017

Examples

			Rows:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 1, 4;
  1, 1, 1, 1, 5;
  1, 2, 3, 2, 1, 6; ...
		

Crossrefs

Cf. A003989.
Cf. A018804 (row sums), A245717.
Cf. A132442 (sums of divisors).
Cf. A003418.

Programs

  • Haskell
    a050873 = gcd
    a050873_row n = a050873_tabl !! (n-1)
    a050873_tabl = zipWith (map . gcd ) [1..] a002260_tabl
    -- Reinhard Zumkeller, Dec 12 2015, Aug 13 2013, Jun 10 2013
  • Mathematica
    ColumnForm[Table[GCD[n, k], {k, 12}, {n, k}], Center] (* Alonso del Arte, Jan 14 2011 *)
  • PARI
    {T(n, k) = gcd(n, k)} /* Michael Somos, Jul 18 2011 */
    

Formula

a(n) = gcd(A002260(n), A002024(n)); A054521(n) = A000007(a(n)). - Reinhard Zumkeller, Dec 02 2009
T(n,k) = A075362(n,k)/A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = T(k, n) = T(-n, k) = T(n, -k) = T(n, n+k) = T(n+k, k). - Michael Somos, Jul 18 2011
T(n,k) = A051173(n,k) / A051537(n,k). - Reinhard Zumkeller, Jul 07 2013

A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).

Original entry on oeis.org

1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012

Examples

			a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 21.

Crossrefs

Programs

Formula

a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023
Showing 1-10 of 59 results. Next