A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0
Examples
Rows begin: [1, 0, 0, 0, 0, 0, 0, 0, ...], [1, 1, 1, 1, 1, 1, 1, 1, ...], [1, 2, 4, 8, 16, 32, 64, 128, ...], [1, 3, 9, 27, 81, 243, 729, 2187, ...], [1, 4, 16, 64, 256, 1024, 4096, 16384, ...], [1, 5, 25, 125, 625, 3125, 15625, 78125, ...], [1, 6, 36, 216, 1296, 7776, 46656, 279936, ...], [1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
Crossrefs
Rows 0-49 are A000007, A000012, A000079, A000244, A000302, A000351, A000400, A000420, A001018, A001019, A011557, A001020, A001021, A001022, A001023, A001024, A001025, A001026, A001027, A001029, A009964-A009992, A087752.
Columns 0-26 are A000012, A001477, A000290, A000578, A000583, A000584, A001014, A001015, A001016, A001017, A008454, A008455, A008456, A010801-A010813, A089081.
Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Programs
-
Magma
[[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
-
Mathematica
Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
-
PARI
T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
Formula
E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006
Extensions
More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004
Comments