cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004019 a(0) = 0; for n > 0, a(n) = (a(n-1) + 1)^2.

Original entry on oeis.org

0, 1, 4, 25, 676, 458329, 210066388900, 44127887745906175987801, 1947270476915296449559703445493848930452791204, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352025
Offset: 0

Views

Author

Keywords

Comments

Take the standard rooted binary tree of depth n, with 2^(n+1) - 1 labeled nodes. Here is a picture of the tree of depth 3:
R
/ \
/ \
/ \
/ \
/ \
o o
/ \ / \
/ \ / \
o o o o
/ \ / \ / \ / \
o o o o o o o o
Let the number of rooted subtrees be s(n). For example, for n = 1 the s(2) = 4 subtrees are:
R R R R
/ \ / \
o o o o
Then s(n+1) = 1 + 2*s(n) + s(n)^2 = (1+s(n))^2 and so s(n) = a(n+1).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Programs

  • Haskell
    a004019 n = a004019_list !! n
    a004019_list = iterate (a000290 . (+ 1)) 0
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [n le 1 select 0 else  (Self(n-1)+1)^2: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Table[Nest[(1 + #)^2 &, 0, n], {n, 0, 12}] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *)
    NestList[(#+1)^2&,0,10] (* Harvey P. Dale, Oct 08 2011 *)
  • PARI
    a(n) = if(n==0, 0, (a(n-1) + 1)^2);
    vector(20, n, a(n-1)) \\ Altug Alkan, Oct 06 2015

Formula

a(n) = A003095(n)^2 = A003095(n+1) - 1 = A056207(n+1) + 1.
It follows from Aho and Sloane that there is a constant c such that a(n) is the nearest integer to c^(2^n). In fact a(n+1) = nearest integer to b^(2^n) - 1 where b = 2.25851845058946539883779624006373187243427469718511465966.... - Henry Bottomley, Aug 30 2005
a(n) is the number of root ancestral configurations for fully symmetric matching gene trees and species trees with 2^n leaves, a(n) = A355108(2^n). - Noah A Rosenberg, Jun 22 2022

Extensions

One more term from Henry Bottomley, Jul 24 2000
Additional comments from Max Alekseyev, Aug 30 2005