A004019 a(0) = 0; for n > 0, a(n) = (a(n-1) + 1)^2.
0, 1, 4, 25, 676, 458329, 210066388900, 44127887745906175987801, 1947270476915296449559703445493848930452791204, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352025
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..11 (shortened by _N. J. A. Sloane_, Jan 13 2019)
- Geir Agnarsson, Elie Alhajjar, and Aleyah Dawkins, On locally finite ordered rooted trees and their rooted subtrees, arXiv:2312.11379 [math.CO], 2023.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Andressa Paola Cordeiro, Alexandre Tavares Baraviera, and Alex Jenaro Becker, Entropy for k-trees defined by k transition matrices, arXiv:2307.05850 [math.DS], 2023. See p. 15.
- F. Disanto and N. A. Rosenberg, Enumeration of ancestral configurations for matching gene trees and species trees, J. Comput. Biol. 24 (2017), 831-850.
- E. Lappo and N. A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- Elmar Teufl and Stephan Wagner, Enumeration problems for classes of self-similar graphs, Journal of Combinatorial Theory, Series A, Volume 114, Issue 7, October 2007, Pages 1254-1277.
- Wikipedia, Herbrand Structure
- Damiano Zanardini, Computational Logic, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index entries for sequences related to rooted trees
Programs
-
Haskell
a004019 n = a004019_list !! n a004019_list = iterate (a000290 . (+ 1)) 0 -- Reinhard Zumkeller, Feb 01 2013
-
Magma
[n le 1 select 0 else (Self(n-1)+1)^2: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
-
Mathematica
Table[Nest[(1 + #)^2 &, 0, n], {n, 0, 12}] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *) NestList[(#+1)^2&,0,10] (* Harvey P. Dale, Oct 08 2011 *)
-
PARI
a(n) = if(n==0, 0, (a(n-1) + 1)^2); vector(20, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
Formula
It follows from Aho and Sloane that there is a constant c such that a(n) is the nearest integer to c^(2^n). In fact a(n+1) = nearest integer to b^(2^n) - 1 where b = 2.25851845058946539883779624006373187243427469718511465966.... - Henry Bottomley, Aug 30 2005
a(n) is the number of root ancestral configurations for fully symmetric matching gene trees and species trees with 2^n leaves, a(n) = A355108(2^n). - Noah A Rosenberg, Jun 22 2022
Extensions
One more term from Henry Bottomley, Jul 24 2000
Additional comments from Max Alekseyev, Aug 30 2005
Comments