A004023 Indices of prime repunits: numbers k such that 11...111 (with k 1's) = (10^k - 1)/9 is prime.
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, 5794777, 8177207
Offset: 1
Examples
2 appears because the 2-digit repunit 11 is prime. 3 does not appear because 111 = 3 * 37 is not prime. 19 appears because the 19-digit repunit 1111111111111111111 is prime.
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 19, pp 6, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, Section A3.
- Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley, 1994; see p 146 problem 22.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 235.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 142857 at pp. 197-198.
Links
- Paul Bourdelais, A Generalized Repunit Conjecture, NMBRTHRY, 25 Jun 2009.
- John Brillhart, Letter to N. J. A. Sloane, Aug 08 1970
- John Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Chris K. Caldwell, The Prime Pages, Top 20: Repunit (lists certified primes with n >= 1000)
- Patrick De Geest, Circular Primes
- Giovanni Di Maria, Repunit Primes Project
- Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- Harvey Dubner, New probable prime repunit, R(49081), Number Theory List, Sep 09 1999.
- Harvey Dubner, Repunit R49081 is a probable prime, Math. Comp., 71 (2001), 833-835.
- Harvey Dubner, Posting to Number Theory List : Apr 03 2007
- Martianus Frederic Ezerman, Bertrand Meyer, and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012-2014.
- Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.
- Shyam Sunder Gupta, On Some Marvellous Numbers of Kaprekar, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 9, 275-315. See also Repunit Numbers, Ch. 11, 327-352.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See p. 18.
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- Henri Lifchitz, Mersenne and Fermat primes field
- Tom Muller, Ist die Folge der Primzahl-quersummen beschrankt?, Elem. Math. 66 (2011) 146-154; doi:10.4171/EM/183.
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
- Andy Steward, Prime Generalized Repunits
- Sam Wagstaff, Jr., The Cunningham Project
- E. Wegrzynowski, Nombres 1_[n] premiers
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Repunit
- Eric Weisstein's World of Mathematics, Repunit Prime
- H. C. Williams and Harvey Dubner, The primality of R1031, Math. Comp., 47(176), Oct 1986, 703-711.
- Index entries for primes involving repunits
Programs
-
Magma
[p: p in PrimesUpTo(500) | IsPrime((10^p - 1) div 9)]; // Vincenzo Librandi, Nov 06 2014
-
Mathematica
Select[Range[271000], PrimeQ[FromDigits[PadRight[{}, #, 1]]] &] (* Harvey P. Dale, Nov 05 2011 *) repUnsUpTo[k_] := ParallelMap[If[PrimeQ[#] && PrimeQ[(10^# - 1)/9], #, Nothing] &, Range[k]]; repUnsUpTo[5000] (* Mikk Heidemaa, Apr 24 2017 *)
-
PARI
forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1(x","))) \\ Cino Hilliard, Dec 23 2008
-
Python
from sympy import isprime; {print(n, end = ', ') for n in range(1, 10**7) if isprime(n) and isprime(10**n//9)} # (Note that sympy.isprime is only a pseudo-primality test.) - Ya-Ping Lu, Dec 20 2021, edited by M. F. Hasler, Mar 28 2022
Extensions
a(6) = 49081 PRP found by Harvey Dubner - posting to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU) Sep 09, 1999; proved prime by Paul Underwood, Mar 21 2022.
a(7) = 86453 found using pfgw (a faster version of PrimeForm) on Oct 26 2000 by Lew Baxter (posting to Number Theory List), Oct 26, 2000; proved prime by Andreas Enge, May 16 2023.
a(8) = 109297 was apparently discovered independently by (in alphabetical order) Paul Bourdelais and Harvey Dubner around Mar 26-28 2007.
a(9) = 270343, was found Jul 11 2007 by Maksym Voznyy and Anton Budnyy, subsequently confirmed as a(9) (see Repunit Primes Project link) by Robert Price, Dec 14 2010
a(10) = 5794777 was found Apr 20 2021 by Ryan Propper and Serge Batalov
a(11) = 8177207 was found May 08 2021 by Ryan Propper and Serge Batalov
Comments