Original entry on oeis.org
1, 2, 17, 219, 4783, 222018, 28927922
Offset: 0
- C. Cid, T. Schulz: Computation of Five and Six Dimensional Bieberbach Groups, Experimental Mathematics 10:1 (2001), 109-115
A006226
Number of abstract n-dimensional crystallographic point groups.
Original entry on oeis.org
1, 2, 9, 18, 118, 239, 1594
Offset: 0
- P. Engel, "Geometric crystallography," in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
- T. Janssen, Crystallographic Groups. North-Holland, Amsterdam, 1973, p. 73.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proc. Cambridge Philos. Soc. 47, (1951). 650-661.
- A. C. Hurley, Crystal Classes of Four-Dimensional Space R4, Acta Crystallog., 22 (1967), see especially p. 605.
- W. Plesken and T. Schulz, Counting crystallographic groups in low dimensions, Experimental Mathematics, 9 (No. 3, 2000), 407-411.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT [Cached copy in pdf format (without subsidiary pages), with permission]
- E. S. Rosenthal & N. J. A. Sloane, Correspondence, 1975
Two more terms from W. Plesken and T. Schulz (tilman(AT)momo.math.rwth-aachen.de), Feb 27 2001
A006227
Number of n-dimensional space groups (including enantiomorphs).
Original entry on oeis.org
1, 2, 17, 230, 4894, 222097
Offset: 0
- Colin Adams, The Tiling Book, AMS, 2022; see p. 59.
- H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space. Wiley, NY, 1978, p. 52.
- P. Engel, Geometric crystallography, in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- T. Janssen, Crystallographic Groups. North-Holland, Amsterdam, 1973, p. 119.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Dror Bar-Natan, Illustrations of 2-dimensional symmetry groups
- Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean dorbifolds. Discrete and Computational Geometry, Springer Verlag, 2016, 55 (4), pp.827-853. 10.1007/s00454-016-9782-6, hal-01294409
- J. Neubüser, B. Souvignier and H. Wondratschek, Corrections to Crystallographic Groups of Four-Dimensional Space by Brown et al. (1978) [New York: Wiley and Sons], Acta Cryst., A58 (2002), 301.
- J. Opgenorth, W. Plesken and T. Schulz, Crystallographic Algorithms and Tables, Acta Cryst., A54 (1998), 517-531.
- W. Plesken, J. Opgenorth and T. Schulz, CARAT - a package for mathematical crystallography, Journal of Applied Crystallography, 31 (1998), 827-828.
- W. Plesken and T. Schulz, Dominik Bernhardt and others, Computer package CARAT
- W. Plesken and T. Schulz, CARAT Homepage [dead link]
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Counting crystallographic groups in low dimensions, Experimental Mathematics 9 (No. 3, 2000) 407-411.
- E. S. Rosenthal & N. J. A. Sloane, Correspondence, 1975
- B. Souvignier, Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6, Acta Cryst., A59 (2003), 210-220.
- The Fascination of Crystals and Symmetry, 230 (The space group list project)
- N. A. Vavilov, Saint Petersburg School of the Theory of Linear Groups. I. Prehistory, Vestnik St. Petersburg Univ. (Russia 2023), Vol. 56, 273-288.
- Wikipedia, Space group
- Index entries for sequences related to groups
a(4) corrected according to Neubüser, Souvignier and Wondratschek (2002) -
Susanne Wienand, May 19 2014
a(5) added according to Souvignier (2003); a(6) should not be extracted from that paper because it uses the old incorrect CARAT data for d=6 -
Andrey Zabolotskiy, May 19 2015
A004027
Number of arithmetic n-dimensional crystal classes.
Original entry on oeis.org
1, 2, 13, 73, 710, 6079, 85308
Offset: 0
- H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space. Wiley, NY, 1978, p. 52.
- P. Engel, Geometric crystallography, in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
- R. L. E. Schwarzenberger, N-Dimensional Crystallography. Pitman, London, 1980, p. 34.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Akinari Hoshi, Ming-chang Kang and Aiichi Yamasaki, Multiplicative Invariant Fields of Dimension <= 6, Memoirs of the AMS, 2023.
- W. Plesken and T. Schulz, Dominik Bernhardt and others, Computer package CARAT
- W. Plesken and T. Schulz, CARAT Homepage [dead link]
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Counting crystallographic groups in low dimensions, Experimental Mathematics, 9 (No. 3, 2000), 407-411.
- R. L. E. Schwarzenberger, Colour symmetry, Bulletin of the London Mathematical Society 16.3 (1984): 216-229.
A004028
Number of geometric n-dimensional crystal classes.
Original entry on oeis.org
1, 2, 10, 32, 227, 955, 7103
Offset: 0
- H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space. Wiley, NY, 1978, p. 52.
- P. Engel, "Geometric crystallography," in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
- T. Janssen, Crystallographic Groups. North-Holland, Amsterdam, 1973, p. 73.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. Plesken and T. Schulz, CARAT Homepage.
- W. Plesken and T. Schulz, CARAT Homepage. [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT. [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Counting crystallographic groups in low dimensions, Experimental Mathematics, 9 (No. 3, 2000), 407-411.
- E. S. Rosenthal & N. J. A. Sloane, Correspondence, 1975.
A293060
Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional subperiodic groups in n-dimensional space, not counting enantiomorphs.
Original entry on oeis.org
1, 2, 2, 10, 7, 17, 32, 67, 80, 219, 227, 343, 1076, 1594, 4783, 955
Offset: 0
The triangle begins:
1;
2, 2;
10, 7, 17;
32, 67, 80, 219;
227, 343, 1076, 1594, 4783;
955, ...
- M. I. Aroyo et al, Bilbao Crystallographic Server
- International Union of Crystallography, International Tables for Crystallography, volumes A and E.
- A. F. Palistrant, Complete scheme of four-dimensional crystallographic symmetry groups, Crystallography Reports, 57 (2012), 471-477.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Wikipedia: Space group, Crystallographic point group, Line group, Frieze group, Wallpaper group, Rod group, Layer group
- Index entries for sequences related to groups
A307292
Number of black-and-white colored (or proper magnetic) space groups in dimension n, not counting enantiomorphs.
Original entry on oeis.org
0, 3, 46, 1156, 51987
Offset: 0
For the case when enantiomorphs are counted see
A307290.
A004031
Number of n-dimensional crystal systems.
Original entry on oeis.org
1, 1, 4, 7, 33, 59, 251
Offset: 0
- P. Engel, "Geometric crystallography," in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space. Wiley, NY, 1978, p. 52. Corrections.
- J. Neubüser, W. Plesken, and H. Wondratschek, An emendatory discussion on defining crystal systems, Commun. Math. Chem., 10 (1981), 77-96.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- B. Souvignier, Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6, Acta Cryst., A59 (2003), 210-220.
A059104
Number of Bieberbach groups in dimension n: torsion-free crystallographic groups.
Original entry on oeis.org
1, 2, 10, 74, 1060, 38746
Offset: 1
Tilman Schulz (tilman(AT)momo.math.rwth-aachen.de), Feb 13 2001
- Charlap, Leonard S., Bieberbach Groups and Flat Manifolds. Universitext. Springer-Verlag, New York, 1986. xiv+242 pp. ISBN: 0-387-96395-2 MR0862114 (88j:57042). See p. 6.
- C. Cid, T. Schulz: Computation of Five and Six Dimensional Bieberbach Groups, Experimental Mathematics 10:1 (2001), 109-115
- Manuel Caroli, Monique Teillaud. Delaunay triangulations of closed Euclidean dorbifolds. Discrete and Computational Geometry, Springer Verlag, 2016, 55 (4), pp.827-853. 10.1007/s00454-016-9782-6, hal-01294409; https://hal.inria.fr/hal-01294409/document
- W. Plesken and T. Schulz, The CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT [Cached copy in pdf format (without subsidiary pages), with permission]
A059105
Number of n-dimensional torsion-free crystallographic groups with trivial center.
Original entry on oeis.org
0, 0, 1, 4, 101, 5004
Offset: 1
Tilman Schulz (tilman(AT)momo.math.rwth-aachen.de), Feb 13 2001
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- W. Plesken and T. Schulz, Introduction to CARAT [Cached copy in pdf format (without subsidiary pages), with permission]
Showing 1-10 of 15 results.
Comments