A004068 Number of atoms in a decahedron with n shells.
0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (3).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[5*n^3/6+n/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Mathematica
Table[5*n^3/6+n/6,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
Maxima
A004068(n):=5*n^3/6+n/6$ makelist(A004068(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
PARI
a(n)=5*n^3/6+n/6 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A004068(n): return n*(5*n**2+1)//6 # Chai Wah Wu, Mar 25 2025
Formula
a(n) = 5*binomial(n + 1, 3) + binomial(n, 1).
a(n) = 5*n^3/6 + n/6.
a(n) = Sum_{i=0..n-1} A005891(i). - Xavier Acloque, Oct 08 2003
G.f.: x*(1+3*x+x^2) / (1-x)^4. - R. J. Mathar, Jun 05 2011
E.g.f.: (x/6)*(5x^2 + 15x + 6)*exp(x). - G. C. Greubel, Sep 27 2015
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i/sqrt(5)) + polygamma(0, 1+i/sqrt(5))) = 1.233988011257952852492845364799197179252... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
Extensions
Typo in definition corrected by Jean M. Morales, Aug 11 2013
Comments