A292931 Numbers n such that the sum of digits of 3^n (A004166) is divisible by 7.
25, 26, 30, 32, 47, 58, 79, 81, 87, 89, 102, 123, 141, 144, 145, 151, 164, 176, 178, 193, 201, 227, 239, 242, 257, 264, 282, 289, 300, 306, 319, 324, 329, 335, 336, 338, 348, 351, 358, 365, 395, 403, 437, 441, 450, 460, 468, 484, 489, 492, 495, 517, 518, 541, 542, 544, 554, 555, 563, 565, 570
Offset: 1
Examples
a(3) = 30 is in the sequence because 3^30 = 205891132094649 has sum of digits 63, which is divisible by 7.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Mathematics StackExchange, Is sum of digits of 3^1000 divisible by 7?
Crossrefs
Cf. A004166.
Programs
-
Maple
select(n -> convert(convert(3^n,base,10),`+`) mod 7 = 0, [$1..1000]);
-
Mathematica
Select[Range[600],Divisible[Total[IntegerDigits[3^#]],7]&] (* Harvey P. Dale, Mar 01 2018 *)
-
PARI
isok(n) = !(sumdigits(3^n) % 7); \\ Michel Marcus, Sep 27 2017
-
Python
from _future_ import division A292931_list = [n for n in range(1000) if not sum(int(d) for d in str(3**n)) % 7] # Chai Wah Wu, Sep 28 2017
Comments