cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A292931 Numbers n such that the sum of digits of 3^n (A004166) is divisible by 7.

Original entry on oeis.org

25, 26, 30, 32, 47, 58, 79, 81, 87, 89, 102, 123, 141, 144, 145, 151, 164, 176, 178, 193, 201, 227, 239, 242, 257, 264, 282, 289, 300, 306, 319, 324, 329, 335, 336, 338, 348, 351, 358, 365, 395, 403, 437, 441, 450, 460, 468, 484, 489, 492, 495, 517, 518, 541, 542, 544, 554, 555, 563, 565, 570
Offset: 1

Views

Author

Robert Israel, Sep 27 2017

Keywords

Examples

			a(3) = 30 is in the sequence because 3^30 = 205891132094649 has sum of digits 63, which is divisible by 7.
		

Crossrefs

Cf. A004166.

Programs

  • Maple
    select(n -> convert(convert(3^n,base,10),`+`) mod 7 = 0, [$1..1000]);
  • Mathematica
    Select[Range[600],Divisible[Total[IntegerDigits[3^#]],7]&] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    isok(n) = !(sumdigits(3^n) % 7); \\ Michel Marcus, Sep 27 2017
    
  • Python
    from _future_ import division
    A292931_list = [n for n in range(1000) if not sum(int(d) for d in str(3**n)) % 7] # Chai Wah Wu, Sep 28 2017

A292995 Sum of digits of 3^n (A004166) divided by 9.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 3, 5, 4, 3, 3, 5, 4, 5, 3, 5, 6, 6, 7, 7, 9, 8, 8, 7, 9, 7, 8, 11, 9, 9, 10, 10, 9, 10, 11, 10, 12, 10, 11, 12, 14, 13, 12, 16, 13, 13, 15, 12, 10, 10, 12, 14, 13, 11, 15, 17, 17, 16, 15, 13, 18, 17, 17, 16, 20, 18, 17, 19, 20, 17, 18
Offset: 0

Views

Author

M. F. Hasler, Sep 27 2017

Keywords

Comments

All terms A004166(n), n >= 2, are multiples of 9.
For the first two terms, the (zero) integer part of the fractional values (1/9 and 3/9) is taken: This seems to be the most natural extension of the maybe more natural variant of this sequence which would start only at offset n = 2.
Divisibility of A004166(n) by any prime different from 3 is equivalent to divisibility of a(n) by that prime. For example, indices of terms of A004166 divisible by 7, listed in A292931, are also exactly the indices > 1 of terms a(n) divisible by 7.

Crossrefs

Programs

  • Magma
    [n lt 2 select 0 else &+Intseq(3^n)/9: n in [0..100]]; // Vincenzo Librandi, Sep 28 2017
    
  • Maple
    0,0,seq(convert(convert(3^n,base,10),`+`)/9, n=2..100); # Robert Israel, Sep 28 2017
  • Mathematica
    Rest[Table[Sum[DigitCount[(3^n)][[i]] i, {i, 9}] / 9, {n, 100}]] (* Vincenzo Librandi, Sep 28 2017 *)
  • PARI
    a(n)=sumdigits(3^n)\9
    
  • Python
    from _future_ import division
    def A292995(n):
        return sum(int(d) for d in str(3**n))//9 # Chai Wah Wu, Sep 28 2017

A001370 Sum of digits of 2^n.

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 19, 20, 22, 26, 25, 14, 19, 29, 31, 26, 25, 41, 37, 29, 40, 35, 43, 41, 37, 47, 58, 62, 61, 59, 64, 56, 67, 71, 61, 50, 46, 56, 58, 62, 70, 68, 73, 65, 76, 80, 79, 77, 82, 92, 85, 80, 70, 77
Offset: 0

Views

Author

Keywords

Comments

Same digital roots as A065075 (sum of digits of the sum of the preceding numbers) and A004207 (sum of digits of all previous terms); they enter into the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
It is believed that a(n) ~ n*9*log_10(2)/2, but this is an open problem. - N. J. A. Sloane, Apr 21 2013
The Radcliffe preprint shows that a(n) > log_4(n). - M. F. Hasler, May 18 2017
Sierpiński shows that if n >= A137284(k-1) then a(n) >= k (Problem 209). - David Radcliffe, Dec 26 2022

References

  • Archimedeans Problems Drive, Eureka, 26 (1963), 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. sum of digits of k^n: A004166 (k=3), A065713 (k=4), A066001(k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12).

Programs

  • Haskell
    a001370 = a007953 . a000079  -- Reinhard Zumkeller, Aug 14 2015
  • Maple
    seq(convert(convert(2^n,base,10),`+`),n=0..1000); # Robert Israel, Mar 29 2015
  • Mathematica
    Table[Total[IntegerDigits[2^n]], {n, 0, 55}] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    a(n)=sumdigits(2^n); \\ Michel Marcus, Nov 01 2013
    
  • Python
    [sum(map(int, str(2**n))) for n in range(56)] # David Radcliffe, Mar 29 2015
    

Formula

a(n) = A007953(A000079(n)). - Michel Marcus, Nov 01 2013

A066001 Sum of digits of 5^n.

Original entry on oeis.org

1, 5, 7, 8, 13, 11, 19, 23, 25, 26, 40, 38, 28, 23, 34, 44, 58, 56, 64, 59, 61, 62, 67, 74, 82, 77, 79, 89, 85, 83, 91, 104, 106, 89, 103, 92, 109, 104, 124, 134, 130, 137, 145, 149, 151, 116, 112, 128, 145, 158, 151, 152, 130, 119, 127, 167, 196, 215, 211, 191
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Comments

We can expect and conjecture that a(n) ~ 4.5*log_10(5)*n, but for n ~ 10^3..10^4 there are still fluctuations of +- 1%, e.g., a(10^3)/log_10(5) ~ 4538, a(10^4)/log_10(5) ~ 44518. Modulo 9, the sequence is periodic with period (1, 5, 7, 8, 4, 2) of length 6. No term is divisible by 3, a(n) = (-1)^n (mod 3). - M. F. Hasler, May 18 2017

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), this sequence (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

Programs

Formula

a(n) = A007953(A000351(n)). - Michel Marcus, Aug 05 2025

A066002 Sum of digits of 6^n.

Original entry on oeis.org

1, 6, 9, 9, 18, 27, 27, 36, 36, 36, 36, 45, 45, 36, 54, 63, 54, 72, 72, 63, 72, 81, 63, 72, 90, 90, 99, 99, 90, 135, 117, 99, 126, 126, 135, 135, 126, 135, 135, 162, 171, 126, 153, 153, 153, 162, 180, 162, 153, 162, 171, 216, 171, 216, 171, 162
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), this sequence (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Cf. A007953.

Programs

  • Mathematica
    Table[Total[IntegerDigits[6^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    a(n) = sumdigits(6^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A000400(n)). - Michel Marcus, Nov 01 2013 [corrected by Georg Fischer, Dec 28 2020]

A066003 Sum of digits of 7^n.

Original entry on oeis.org

1, 7, 13, 10, 7, 22, 28, 25, 31, 28, 43, 49, 37, 52, 58, 64, 52, 58, 73, 79, 76, 82, 97, 85, 73, 97, 112, 91, 133, 121, 118, 115, 103, 127, 142, 157, 136, 115, 130, 136, 142, 148, 136, 169, 175, 163, 187, 175, 136, 178, 184, 217, 196, 220, 217
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. A000420 (7^n), A007953 (sum of digits).
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), this sequence (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

Programs

  • Magma
    [ &+Intseq(7^n): n in [0..60] ];
    
  • Mathematica
    Table[Total[IntegerDigits[7^n]],{n,55}] (* Harvey P. Dale, Nov 22 2010 *)
  • PARI
    a(n) = sumdigits(7^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A000420(n)). - Michel Marcus, Nov 01 2013

A175527 Digit sum of 13^n.

Original entry on oeis.org

1, 4, 16, 19, 22, 25, 37, 40, 34, 46, 67, 52, 55, 58, 97, 73, 85, 88, 91, 85, 115, 91, 121, 106, 109, 121, 133, 118, 121, 133, 163, 184, 169, 181, 193, 169, 172, 175, 178, 199, 193, 214, 226, 238, 169, 190, 247, 241, 208, 247, 232, 253, 292, 241, 316, 292, 268, 271, 301, 286, 298, 337, 304, 325
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

It is surprising that many values repeat twice (for 85, 91, 121, 133, 169 this happens at a(n) = a(n+3) (but 169 occurs later for a third time), for 193, 241, 292, ... the second occurrence comes later) while many other values never occur. Is there a simple explanation? - M. F. Hasler, May 18 2017

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), this sequence (k=13).

Programs

  • Mathematica
    Table[Total[IntegerDigits[13^k]], {k,0,1000}]
  • PARI
    a(n)=sumdigits(13^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001022(n)). - Michel Marcus, Nov 01 2013
a(n) ~ 4.5*log_10(13)*n ~ 5.0127*n (conjectured). - M. F. Hasler, May 18 2017

A065999 Sum of digits of 9^n.

Original entry on oeis.org

1, 9, 9, 18, 18, 27, 18, 45, 27, 45, 45, 45, 54, 63, 72, 63, 63, 99, 81, 90, 90, 90, 90, 108, 117, 144, 117, 108, 90, 126, 99, 153, 144, 117, 153, 144, 162, 171, 153, 153, 153, 198, 162, 171, 198, 216, 171, 198, 198, 225, 153, 252, 216, 234, 207
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Comments

a(n) mod 9 = 0 for n > 0. - Reinhard Zumkeller, May 14 2011

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), this sequence (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Cf. also A056888, A001019.

Programs

  • Mathematica
    Table[Total[IntegerDigits[9^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    a(n) = sumdigits(9^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001019(n)). - Michel Marcus, Nov 01 2013

A066004 Sum of digits of 8^n.

Original entry on oeis.org

1, 8, 10, 8, 19, 26, 19, 26, 37, 35, 37, 62, 64, 71, 46, 62, 73, 80, 82, 80, 82, 89, 109, 89, 109, 125, 100, 107, 118, 107, 118, 125, 127, 107, 118, 125, 145, 143, 145, 152, 172, 170, 172, 188, 181, 170, 190, 215, 172, 215, 235, 233, 217, 215
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), this sequence (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

Programs

  • Mathematica
    Table[Total[IntegerDigits[8^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    a(n) = sumdigits(8^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001018(n)). - Michel Marcus, Nov 01 2013

A066005 Sum of digits of 11^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 14, 28, 38, 40, 53, 43, 41, 55, 47, 76, 71, 88, 86, 82, 83, 94, 71, 97, 95, 118, 101, 112, 125, 124, 140, 145, 137, 139, 143, 178, 140, 172, 200, 184, 188, 205, 203, 190, 164, 175, 215, 196, 248, 190, 218, 265, 251, 223, 230
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), this sequence (k=11), A066006 (k=12), A175527 (k=13).

Programs

  • Mathematica
    Total/@(IntegerDigits/@(11^Range[0,60])) (* Harvey P. Dale, Nov 02 2011 *)
  • PARI
    a(n) = sumdigits(11^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001020(n)). - Michel Marcus, Nov 01 2013
Showing 1-10 of 25 results. Next