cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052413 Numbers without 5 as a digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Crossrefs

Cf. A004180, A004724, A038613 (subset of primes), A082834 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).

Programs

  • Haskell
    a052413 = f . subtract 1 where
    f 0 = 0
    f v = 10 * f w + if r > 4 then r + 1 else r where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [ n: n in [0..89] | not 5 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local l, m; l, m:= 0, n-1;
          while m>0 do l:= (d->
            `if`(d<5, d, d+1))(irem(m, 9, 'm')), l
          od; parse(cat(l))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 01 2016
  • Mathematica
    Select[Range[100],!MemberQ[IntegerDigits[#],5]&] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    apply( {A052413(n)=fromdigits(apply(d->d+(d>4),digits(n-1,9)))}, [1..99]) \\ a(n)
    select( {is_A052413(n)=!setsearch(Set(digits(n)),5)}, [0..99]) \\ used in A038613
    next_A052413(n, d=digits(n+=1))={for(i=1,#d, d[i]==5&&return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n; used in A038613. - M. F. Hasler, Jan 11 2020
    
  • Python
    # see the OEIS wiki page (cf. LINKS) for more programs
    def A052413(n): n-=1; return sum(n//9**e%9*6//5*10**e for e in range(math.ceil(math.log(n+1,9)))) # M. F. Hasler, Jan 13 2020
    
  • Python
    from gmpy2 import digits
    def A052413(n): return int(digits(n-1,9).translate(str.maketrans('5678','6789'))) # Chai Wah Wu, Jun 28 2025
  • sh
    seq 0 1000 | grep -v 5; # Joerg Arndt, May 29 2011
    

Formula

a(n) = replace digits d > 4 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(n) = A082834 = 21.8346008... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 13 2020

Extensions

Offset changed by Reinhard Zumkeller, Oct 07 2014

A004724 Delete all 5's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 4, 46, 47, 48, 49, 0, 1, 2, 3, 4, 6, 7, 8, 9, 60, 61, 62, 63, 64, 6, 66, 67, 68, 69, 70, 71, 72, 73, 74, 7, 76
Offset: 0

Views

Author

Keywords

Comments

In contrast to the variant A004180 where a(n) = 0 when all the digits of n are 5's, here a number completely disappears in that case, so that subsequent indices are shifted and for n > 4, a(n) is not the result of deleting 5's from n: see formula. - M. F. Hasler, Jan 13 2020

Examples

			From  _M. F. Hasler_, Jan 13 2020: (Start)
After a(4) = 4 comes a(5) = 6, since the number 5 completely disappears.
a(48) = 49 is followed by 0, 1, 2, 3, 4 (i.e., 50, ..., 54 with the initial digit removed) and then a(54) = 6, because 55 disappears completely.
Illustration of the formula: as long as n < 5 (the first number that completely disappears) we have a(n) = A004180(n). Here n has 1 digit but n+1 does not exceed the (single repdigit) 5 (left hand side in the Iverson bracket), so m = 0. From n = 5 on, n+1 > 5, so m = 1.
Then, when n has L(n) = 2 digits, we still have n = 2 - 1 = 1 as long as n+2 <= 55 or n <= 53, but m = 3 for n > 55 - 2 = 53, i.e., from n = 54 on (where the term 55 has disappeared, see above).
Similarly, m = 3 for n > 555 - 3, i.e., from n >= 553 on, etc. (End)
		

Crossrefs

Cf. A004180 (delete digits 5 in n), A052413 (numbers with no digit 5).

Programs

  • MATLAB
    m=1; for u=0:76 v=dec2base(u, 10)-'0'; v = v(v~=5);  if length(v)>0; sol(m)=(str2num(strrep(num2str(v), ' ', ''))); m=m+1; end; end; sol % Marius A. Burtea, Jan 16 2020
    
  • PARI
    apply( {A004724(n,L=logint(n+!n,10)+1)=A004180(n+L-(10^L\9*5-L>=n))}, [0..99])
    A004724_upto(N)={[fromdigits(v)|v<-[[d|d<-digits(n+!n*50),d!=5]|n<-[0..N]],#v]} \\ M. F. Hasler, Jan 13 2020
    
  • Python
    def A004724(n):
        l = len(str(n))
        m = 5*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 4 if k == m else int(str(k).replace('5','')) # Chai Wah Wu, Apr 20 2021

Formula

a(n) = A004180(n + m) where m = L(n) - [ (10^L(n)-1)/9*5 >= n + L(n) ], L(n) = floor(log_10(max(n,1)) + 1), the number of digits of n, and [...] is the Iverson bracket (1 if true, 0 else). - M. F. Hasler, Jan 13 2020

A004177 Omit 2's from n.

Original entry on oeis.org

0, 1, 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 13, 14, 15, 16, 17, 18, 19, 0, 1, 0, 3, 4, 5, 6, 7, 8, 9, 30, 31, 3, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4, 43, 44, 45, 46, 47, 48, 49, 50, 51, 5, 53, 54, 55, 56, 57, 58, 59, 60, 61, 6, 63, 64, 65, 66, 67, 68, 69, 70, 71, 7, 73, 74
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i;
         L:= subs(2=NULL,convert(n,base,10));
         add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 15 2024
  • Mathematica
    Table[FromDigits[DeleteCases[IntegerDigits[n],2]],{n,0,80}] (* Harvey P. Dale, Feb 12 2022 *)
Showing 1-3 of 3 results.