cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004250 Number of partitions of n into 3 or more parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1

Views

Author

Keywords

Comments

Number of (n+1)-vertex spider graphs: trees with n+1 vertices and exactly 1 vertex of degree at least 3 (i.e. branching vertex). There is a trivial bijection with the objects described in the definition. - Emeric Deutsch, Feb 22 2014
Also the number of graphical partitions of 2n into n parts. - Gus Wiseman, Jan 08 2021

Examples

			a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
  (222)  (2222)  (22222)  (222222)  (2222222)
         (3221)  (32221)  (322221)  (3222221)
                 (33211)  (332211)  (3322211)
                 (42211)  (333111)  (3332111)
                          (422211)  (4222211)
                          (432111)  (4322111)
                          (522111)  (4331111)
                                    (4421111)
                                    (5222111)
                                    (5321111)
                                    (6221111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Rightmost column of A259873.
Central column of A339659.
A000041 counts partitions of 2n into n parts, ranked by A340387.
A000569 counts graphical partitions, ranked by A320922.
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339617 counts non-graphical partitions of 2n (A339618).
- A339656 counts loop-graphical partitions (A339658).
Partial sums of A117995.

Programs

  • Maple
    with(combinat);
    for i from 1 to 15 do pik(i,3) od;
    pik:= proc(n::integer, k::integer)
    # Thomas Wieder, Jan 30 2007
    local i, Liste, Result;
    if k > n or n < 0 or k < 1 then
    return fail
    end if;
    Result := 0;
    for i from k to n do
    Liste:= PartitionList(n,i);
    #print(Liste);
    Result := Result + nops(Liste);
    end do;
    return Result;
    end proc;
    PartitionList := proc (n, k)
    # Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
    # "East Side West Side,..." University of Pennsylvania, USA, 2002.
    # Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
    # Calculates the partition of n into k parts.
    # E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
    local East, West;
    if n < 1 or k < 1 or n < k then
    RETURN([])
    elif n = 1 then
    RETURN([[1]])
    else if n < 2 or k < 2 or n < k then
    West := []
    else
    West := map(proc (x) options operator, arrow;
    [op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
    if k <= n-k then
    East := map(proc (y) options operator, arrow;
    map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
    else East := [] end if;
    RETURN([op(West), op(East)])
    end if;
    end proc;
    #  Thomas Wieder, Feb 01 2007
    ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
    B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
    Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
    Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
    Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
  • PARI
    a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */

Formula

G.f.: Sum_{n>=0} (q^n / Product_{k=1..n+3} (1 - q^k)). - N. J. A. Sloane
a(n) = A000041(n) - floor((n+2)/2) = A000041(n)-A004526(n+2) = A058984(n)-1. - Vladeta Jovovic, Jun 18 2003
Let P(n,i) denote the number of partitions of n into i parts. Then a(n) = Sum_{i=3..n} P(n,i). - Thomas Wieder, Feb 01 2007
a(n) = A259873(n,n). - Gus Wiseman, Jan 08 2021

Extensions

Definition corrected by Thomas Wieder, Feb 01 2007 and by Eric W. Weisstein, May 16 2007