A004275 1 together with nonnegative even numbers.
0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
a004275 n = 2 * n - 1 + signum (1 - n) a004275_list = 0 : 1 : [2, 4 ..] -- Reinhard Zumkeller, Dec 18 2013
-
Magma
[Floor((2*n^2)/(1 + n)): n in [0..60] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
A004275:= n-> 2*n - 2 + floor(2/(n+1)); seq(A004275(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
A004275[n_]:=Floor[(2 n^2)/(1 + n)]; (* Enrique Pérez Herrero, Apr 05 2010 *) Insert[Range[0,110,2],1,2] (* Harvey P. Dale, Feb 27 2015 *)
Formula
G.f.: x*(1+x^2)/(1-x)^2. - Paul Barry, Feb 28 2003
a(n) = floor((2*n^2)/(1 + n)). - Enrique Pérez Herrero, Apr 05 2010
a(n) = 2n - 2 + floor(2/(n+1)) = max(n, 2n-2) = 2n - 1 + sgn(1-n). Also, a(0)=0, a(1)=1, a(n) = 2n-2 for n > 1. - Wesley Ivan Hurt, Nov 05 2013
E.g.f.: 2 + 2*exp(x)*(x - 1) + x. - Stefano Spezia, Jun 16 2024
Comments