cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004277 1 together with positive even numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132
Offset: 0

Views

Author

Keywords

Comments

Also number of non-attacking bishops on n X n board. - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
Engel expansion of e^(1/2) (see A006784 for definition) [when offset by 1]. - Henry Bottomley, Dec 18 2000
Numbers n such that a 2n-group (i.e., a group of order 2n) has subgroup C_2. - Lekraj Beedassy, Oct 14 2004
Image of 1/(1-2x) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
Position of n in A113322: A113322(a(n-1)) = n for n>0. - Reinhard Zumkeller, Oct 26 2005
Incrementally largest terms in the continued fraction for e. - Nick Hobson, Jan 11 2007
Conjecturally, the differences of two consecutive primes (without repetition). - Juri-Stepan Gerasimov, Nov 09 2009
Equals (1, 2, 2, 2, ...) convolved with (1, 0, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Mar 03 2010
a(n) is the number of 0-dimensional elements (vertices) in an n-cross polytope. - Patrick J. McNab, Jul 06 2015
Numbers k such that in the symmetric representation of sigma(k) there is no pair bars as its ends (Cf. A237593). - Omar E. Pol, Sep 28 2018
Also, the coordination sequence of the L-lattice (see A332419). - Sean A. Irvine, Jul 29 2020

Crossrefs

INVERT transformation yields A098182 without A098182(0). - R. J. Mathar, Sep 11 2008

Programs

Formula

G.f.: (1+x^2)/(1-x)^2. - Paul Barry, Feb 28 2003
Inverse binomial transform of Cullen numbers A002064. a(n)=2n+0^n. - Paul Barry, Jun 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1)*(-1)^k*2^(n-2k). - Paul Barry, Jan 16 2005
Equals binomial transform of [1, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Jul 15 2008
E.g.f.: 1+x*sinh(x) (aerated sequence). - Paul Barry, Oct 11 2009
a(n) = 0^n + 2*n = A000007(n) + A005843(n). - Reinhard Zumkeller, Jan 11 2012

Extensions

Corrected by Charles R Greathouse IV, Mar 18 2010