cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004310 Binomial coefficient C(2n,n-4).

Original entry on oeis.org

1, 10, 66, 364, 1820, 8568, 38760, 170544, 735471, 3124550, 13123110, 54627300, 225792840, 927983760, 3796297200, 15471286560, 62852101650, 254661927156, 1029530696964, 4154246671960, 16735679449896, 67327446062800, 270533919634160, 1085929983159840, 4355031703297275
Offset: 4

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=4. - Herbert Kociemba, May 23 2004

Crossrefs

Diagonal 9 of triangle A100257.
Cf. A001622.

Programs

  • Magma
    [ Binomial(2*n,n-4): n in [4..150] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Mathematica
    Table[Binomial[2*n, n-4], {n, 4, 30}] (* Amiram Eldar, Aug 27 2022 *)
  • PARI
    first(m)=vector(m,i,binomial(2*(i+3),i-1)) \\ Anders Hellström, Aug 17 2015

Formula

D-finite with recurrence -(n-4)*(n+4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Dec 22 2013
G.f.: x*(1/(sqrt(1-4*x)*x)-(1-sqrt(1-4*x))/(2*x^2))/((1-sqrt(1-4*x))/(2*x)-1)^5-(1/x^4-6/x^3+10/x^2-4/x). - Vladimir Kruchinin, Aug 11 2015
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+4). - Hermann Stamm-Wilbrandt, Aug 17 2015
E.g.f.: BesselI(4,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=4} 1/a(n) = 23*Pi/(9*sqrt(3)) - 211/60.
Sum_{n>=4} (-1)^n/a(n) = 1586*log(phi)/(5*sqrt(5)) - 1347/20, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([9/2,5],[9],4*x). - Karol A. Penson, Apr 24 2024