cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004615 Divisible only by primes congruent to 1 mod 5.

Original entry on oeis.org

1, 11, 31, 41, 61, 71, 101, 121, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 341, 401, 421, 431, 451, 461, 491, 521, 541, 571, 601, 631, 641, 661, 671, 691, 701, 751, 761, 781, 811, 821, 881, 911, 941
Offset: 1

Views

Author

Keywords

Comments

Also numbers with all divisors ending with digit 1.
Union of number 1, A030430 and A068872. - Jaroslav Krizek, Feb 12 2012
Also numbers with all divisors ending with the same digit; as 1 divides all the integers, this digit is necessarily 1 (see first comment); hence, for these numbers m: A330348(m) = A000005(m). - Bernard Schott, Nov 09 2020

Crossrefs

Cf. A027748, A030430 (primes), A068872 (composites).
Cf. A010879, A027750, A002808, A330348, A338784 (subsequence).

Programs

  • Haskell
    a004615 n = a004615_list !! (n-1)
    a004615_list = filter (all (== 1) . (map (`mod` 5) . a027748_row)) [1..]
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Magma
    [n: n in [1..1500] | forall{d: d in PrimeDivisors(n) | d mod 5 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Mathematica
    ok[1]=True;ok[n_]:=And@@(Mod[#,5]==1&)/@FactorInteger[n][[All,1]];Select[Range[2000],ok] (* Vincenzo Librandi, Aug 21 2012 *)
    Select[Range[1000],Union[Mod[#,5]&/@FactorInteger[#][[All,1]]]=={1}&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=#select(p->p%5!=1, factor(n)[,1])==0 \\ Charles R Greathouse IV, Mar 11 2014

Extensions

A206291 merged in by Franklin T. Adams-Watters, Sep 21 2012