A068871 Duplicate of A004615.
1, 11, 31, 41, 61, 71, 101, 121, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a030430 n = a030430_list !! (n-1) a030430_list = filter ((== 1) . a010051) a017281_list -- Reinhard Zumkeller, Apr 16 2012
Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *) Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017
1.01091516060101952260495658428951492...
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)
1.0218780604187566757444489146002708261704607377325...
evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]); $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,1,4]/Z[5,1,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *) digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]]; cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]); A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2]; digitize[A340629] (* Peter Luschny, Jan 23 2021 *)
The divisors of 12 that end in 2 are 2 and 12, so a(12) = 2.
f:= proc(n) local t; t:= n mod 10; nops(select(k -> k mod 10 = t, numtheory:-divisors(n))) end proc: map(f, [$1..100]); # Robert Israel, Jun 04 2020
a[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; Array[a, 100] (* Amiram Eldar, Jun 04 2020 *)
a(n) = my(u=n%10); sumdiv(n, d, d%10 == u); \\ Michel Marcus, Jun 04 2020
from sympy import divisors def a(n): return sum((n-d)%10 == 0 for d in divisors(n, generator=True)) print([a(n) for n in range(1, 90)]) # Michael S. Branicky, Aug 15 2022
1.0000698728321842614141963526460062515 = (14641/14640) * (923521/923520) * (2825761/2825760) *...
All divisors of 187 (1, 11, 17, 187) start with digit 1.
filter:= proc(n) andmap(t -> floor(t/10^ilog10(t)) = 1, numtheory:-divisors(n)) end proc: select(filter, [seq($10^d .. 2*10^d-1, d=0..3)]); # Robert Israel, Dec 25 2024
fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1111], fQ] (* T. D. Noe, Feb 13 2012 *)
121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121. 3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121. a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - _David A. Corneth_, Nov 09 2020
a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020
39 = 3*13.
q:= n-> (l-> nops(l)>1 and nops({map(i-> irem(i[1], 10), l)[]})=1)(ifactors(n)[2]): select(q, [$1..2000])[]; # Alois P. Heinz, Feb 18 2025
Sort[Times@@@Cases[Subsets[Prime[Range[100]],{2}],?(Mod[#[[1]]-#[[2]],10]==0&)]][[;;100]] (* _Shenghui Yang, Feb 18 2025 *)
isok(k) = my(f=factor(k)); (#f~ != 1) && (#Set(vector(#f~, i, f[i,1] % 10)) == 1); \\ Michel Marcus, Feb 18 2025
from sympy import factorint def ok(n): return len(f:=factorint(n)) > 1 and len(set(p%10 for p in f)) == 1 print([k for k in range(1, 1060) if ok(k)]) # Michael S. Branicky, Feb 18 2025
Comments