cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004695 a(n) = floor(Fibonacci(n)/2).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 116, 188, 305, 493, 798, 1292, 2090, 3382, 5473, 8855, 14328, 23184, 37512, 60696, 98209, 158905, 257114, 416020, 673134, 1089154, 1762289, 2851443, 4613732, 7465176, 12078908, 19544084, 31622993, 51167077, 82790070, 133957148
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Column sums of:
1 1 2 3 5 8 13 21 34 55...
1 1 2 3 5 8 13...
1 1 2 3...
1...
---------------------------
1 1 2 4 6 10 17 27 44 72...
This sequence counts partially ordered partitions of (n-3) into parts no greater than 3, where the position of the 1's and 2's is important. Alternatively, the position of the 3's is unimportant. (see example below). - David Neil McGrath, Apr 26 2015
Also the matching and vertex cover number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Sep 06 2017

Examples

			Partial Order of 6 into parts (1,2,3) with position of 3 unimportant. a(9)=17 These are (33),(321=231=213),(312=132=123),(3111=1311=1131=1113),(222),(2211),(2121),(2112),(1212),(1122),(1221),(21111),(12111),(11211),(11121),(11112),(111111). - _David Neil McGrath_, Apr 26 2015
		

Crossrefs

Programs

  • Magma
    [Floor(Fibonacci(n)/2): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
  • Maple
    seq(iquo(fibonacci(n),2),n=0..36); # Zerinvary Lajos, Apr 20 2008
    f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 3 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # N. J. A. Sloane, May 25 2008
  • Mathematica
    CoefficientList[Series[x^3 / ((1 - x^3) (1 - x - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
    Floor[Fibonacci[Range[0, 50]]/2] (* Harvey P. Dale, Feb 15 2015 *)
    LinearRecurrence[{1, 1, 1, -1, -1}, {0, 0, 0, 1, 1}, 50] (* Harvey P. Dale, Feb 15 2015 *)
    Floor[Fibonacci[Range[0, 20]]/2] (* Eric W. Weisstein, Sep 06 2017 *)
  • PARI
    a(n)=fibonacci(n)\2
    

Formula

G.f.: x^3/((1-x^3)*(1-x-x^2)). - Ralf Stephan, Jul 22 2003, corrected by Paul Barry
a(n) = Fibonacci(n)/2 - (1-cos(2Pi*n/3))/3. - Paul Barry, Oct 06 2003
From Paul Barry, Jan 14 2005: (Start)
a(n+2) = Sum_{k=0..floor(n/3)} F(n-3*k).
a(n+2) = Sum_{k=0..n} if(mod(n-k, 3)=0, F(k), 0). (End)
a(n+2) = Sum_{k=0..n} F(k)*(cos(2*Pi*(n-k)/3+Pi/3)/3+sqrt(3)*sin(2*Pi*(n-k)/3+Pi/3)/3+1/3). - Paul Barry, Apr 16 2005
a(n) = a(n-1)+a(n-2)+1 if n mod 3 = 0, else a(n) = a(n-1)+a(n-2). - Gary Detlefs, Dec 05 2010
a(n) = Fibonacci(n-2)+floor(Fibonacci(n-3)/2). - Gary Detlefs, Mar 28 2011
a(n) = (A000045(n) - A011655(n))/2.
a(n) = a(n-1)+a(n-2)+a(n-3)-a(n-4)-a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=1. - Carl Najafi, May 06 2014