cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004699 a(n) = floor(Fibonacci(n)/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 14, 24, 38, 62, 101, 164, 266, 430, 696, 1127, 1824, 2951, 4776, 7728, 12504, 20232, 32736, 52968, 85704, 138673, 224378, 363051, 587429, 950481, 1537910, 2488392, 4026302, 6514694, 10540997, 17055692, 27596690, 44652382
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045.

Programs

  • Magma
    [Floor(Fibonacci(n)/6): n in [0..40]]; // Vincenzo Librandi, Jul 10 2012
    
  • Maple
    seq(floor(combinat[fibonacci](n)/6), n=0..40); # Muniru A Asiru, Oct 10 2018
  • Mathematica
    Table[Floor[Fibonacci[n]/6], {n, 0, 50}] (* Vincenzo Librandi, Jul 10 2012 *)
    CoefficientList[Series[x^6 (1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2) (1 - x^24)), {x, 0, 50}], x] (* Stefano Spezia, Oct 11 2018 - corrected by G. C. Greubel, May 21 2019 *)
  • PARI
    vector(50, n, n--; fibonacci(n)\6) \\ G. C. Greubel, Oct 09 2018
    
  • Sage
    [floor(fibonacci(n)/6) for n in (0..40)] # G. C. Greubel, May 21 2019

Formula

G.f.: x^6*(1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2)*(1 - x^24)). [Corrected by G. C. Greubel, May 21 2019]
a(n) = (A000045(n) - A082117(n))/6. - R. J. Mathar, Jul 14 2012