A004699 a(n) = floor(Fibonacci(n)/6).
0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 14, 24, 38, 62, 101, 164, 266, 430, 696, 1127, 1824, 2951, 4776, 7728, 12504, 20232, 32736, 52968, 85704, 138673, 224378, 363051, 587429, 950481, 1537910, 2488392, 4026302, 6514694, 10540997, 17055692, 27596690, 44652382
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1).
Crossrefs
Cf. A000045.
Programs
-
Magma
[Floor(Fibonacci(n)/6): n in [0..40]]; // Vincenzo Librandi, Jul 10 2012
-
Maple
seq(floor(combinat[fibonacci](n)/6), n=0..40); # Muniru A Asiru, Oct 10 2018
-
Mathematica
Table[Floor[Fibonacci[n]/6], {n, 0, 50}] (* Vincenzo Librandi, Jul 10 2012 *) CoefficientList[Series[x^6 (1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2) (1 - x^24)), {x, 0, 50}], x] (* Stefano Spezia, Oct 11 2018 - corrected by G. C. Greubel, May 21 2019 *)
-
PARI
vector(50, n, n--; fibonacci(n)\6) \\ G. C. Greubel, Oct 09 2018
-
Sage
[floor(fibonacci(n)/6) for n in (0..40)] # G. C. Greubel, May 21 2019
Formula
G.f.: x^6*(1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2)*(1 - x^24)). [Corrected by G. C. Greubel, May 21 2019]