A243658
a(0)=0; thereafter a(n) = noz(n+a(n-1)), where noz(n) = A004719(n).
Original entry on oeis.org
0, 1, 3, 6, 1, 6, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 21, 42, 64, 87, 111, 136, 162, 189, 217, 246, 276, 37, 69, 12, 46, 81, 117, 154, 192, 231, 271, 312, 354, 397, 441, 486, 532, 579, 627, 676, 726, 777, 829, 882, 936, 991, 147, 24, 82, 141, 21, 82, 144, 27, 91, 156, 222, 289
Offset: 0
-
noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end;
t1:=[0]; for n from 1 to 50 do t1:=[op(t1),noz(n+t1[n])]; od: t1;
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 0}, NestList[noz[++n+#] &, 0, 100]] (* Paolo Xausa, Apr 17 2024 *)
-
from itertools import count, islice
def noz(n): return int(str(n).replace("0", ""))
def agen(): # generator of terms
yield (an:=0)
yield from (an:=noz(n+an) for n in count(1))
print(list(islice(agen(), 68))) # Michael S. Branicky, Jul 02 2024
A243657
Zeroless factorials: a(0)=1; thereafter a(n) = noz(n*a(n-1)), where noz(n) = A004719(n) omits the zeros from n.
Original entry on oeis.org
1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 42768, 513216, 667188, 934632, 141948, 2271168, 3869856, 6965748, 132349212, 264698424, 555866694, 1222967268, 28128247164, 67577931936, 16894482984, 439256557584, 1185992754768, 332779713354, 965611687266, 289683561798, 89819415738
Offset: 0
-
noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end;
t1:=[1]; for n from 1 to 50 do t1:=[op(t1),noz(n*t1[n])]; od: t1;
-
nxt[{n_,a_}]:={n+1,FromDigits[DeleteCases[IntegerDigits[a(n+1)],0]]}; NestList[nxt,{0,1},40][[;;,2]] (* Harvey P. Dale, Feb 13 2024 *)
-
from itertools import count, islice
def noz(n): return int(str(n).replace("0", ""))
def agen(): # generator of terms
yield (an:=1)
yield from (an:=noz(n*an) for n in count(1))
print(list(islice(agen(), 32))) # Michael S. Branicky, Jul 02 2024
A306569
a(n) is the largest value obtained by iterating x -> noz(x * n) starting from 1 (where noz(k) = A004719(k) omits the zeros from k) if any, otherwise a(n) = -1.
Original entry on oeis.org
1, 765257552, 4858337151, 62987487698944, 14281197489647865625, 16756687971893376, 956884714362661, 292452281337511936, 11897243269649199, 1, 824281567746336491, 13552472793415699584, 841944776182612378933, 9434962871842528764976
Offset: 1
a(2) = max(A242350) = 765257552.
See
A306567 for the additive variant.
A373169
Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 1, 5, 1, 6, 12, 16, 6, 6, 1, 7, 15, 22, 25, 12, 7, 1, 8, 18, 28, 35, 36, 19, 8, 1, 9, 21, 34, 45, 51, 49, 27, 9, 1, 1, 24, 4, 55, 66, 7, 64, 36, 1, 1, 11, 18, 46, 29, 81, 91, 29, 81, 46, 2, 1, 12, 3, 43, 75, 6, 112, 12, 54, 1, 57, 3
Offset: 2
The array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, ... = A177274
3 | 1, 3, 6, 1, 6, 12, 19, 27, 36, 46, ... = A243658 (from n = 1)
4 | 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, ... = A370812
5 | 1, 5, 12, 22, 35, 51, 7, 29, 54, 82, ... = A373171
6 | 1, 6, 15, 28, 45, 66, 91, 12, 45, 82, ... = A373172
7 | 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, ...
8 | 1, 8, 21, 4, 29, 6, 43, 86, 135, 19, ...
9 | 1, 9, 24, 46, 75, 111, 154, 24, 81, 145, ...
10 | 1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...
... | \______ A373170 (main diagonal)
A004719 (from n = 2)
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];
Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]
-
noz(n) = fromdigits(select(sign, digits(n)));
T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));
matrix(7,7,n,k,T(n+1,k)) \\ Michel Marcus, May 30 2024
A370812
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 2*n - 1), where noz(n) = A004719(n).
Original entry on oeis.org
1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 22, 45, 7, 34, 63, 94, 127, 162, 199, 238, 279, 322, 367, 414, 463, 514, 567, 622, 679, 738, 799, 862, 927, 994, 163, 234, 37, 112, 189, 268, 349, 432, 517, 64, 153, 244, 337, 432, 529, 628, 729, 832, 937, 144, 253, 364, 477
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*2 - 1 + #] &, 1, 100]]
A373171
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 3*n - 2), where noz(n) = A004719(n).
Original entry on oeis.org
1, 5, 12, 22, 35, 51, 7, 29, 54, 82, 113, 147, 184, 224, 267, 313, 362, 414, 469, 527, 588, 652, 719, 789, 862, 938, 117, 199, 284, 372, 463, 557, 654, 754, 857, 963, 172, 284, 399, 517, 638, 762, 889, 119, 252, 388, 527, 669, 814, 962, 1113, 1267, 1424, 1584
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*3 - 2 + #] &, 1, 100]]
-
noz(n) = fromdigits(select(sign, digits(n))); \\ A004719
lista(nn) = my(va=vector(nn)); for (n=1, nn, va[n] = if (n==1, 1, noz(va[n-1] + 3*n - 2))); va; \\ Michel Marcus, Jun 03 2024
A373172
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 4*n - 3), where noz(n) = A004719(n).
Original entry on oeis.org
1, 6, 15, 28, 45, 66, 91, 12, 45, 82, 123, 168, 217, 27, 84, 145, 21, 9, 82, 159, 24, 19, 18, 111, 28, 129, 234, 343, 456, 573, 694, 819, 948, 181, 318, 459, 64, 213, 366, 523, 684, 849, 118, 291, 468, 649, 834, 123, 316, 513, 714, 919, 1128, 1341, 1558, 1779
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*4 - 3 + #] &, 1, 100]]
nxt[{n_,a_}]:={n+1,FromDigits[DeleteCases[IntegerDigits[a+4n+1],0]]}; NestList[nxt,{1,1},60][[;;,2]] (* Harvey P. Dale, Jul 08 2024 *)
-
noz(n) = fromdigits(select(sign, digits(n))); \\ A004719
lista(nn) = my(va=vector(nn)); for (n=1, nn, va[n] = if (n==1, 1, noz(va[n-1] + 4*n - 3))); va; \\ Michel Marcus, Jun 03 2024
A306567
a(n) is the largest value obtained by iterating x -> noz(x + n) starting from 0 (where noz(k) = A004719(k) omits the zeros from k).
Original entry on oeis.org
9, 99, 27, 99, 96, 99, 63, 99, 81, 91, 99, 195, 94, 295, 93, 291, 113, 189, 171, 992, 159, 187, 187, 483, 988, 475, 153, 281, 181, 273, 279, 577, 297, 997, 567, 369, 333, 363, 351, 994, 219, 465, 357, 663, 459, 461, 423, 192, 441, 965, 399, 999, 437, 126, 551
Offset: 1
For n = 1:
- noz(0 + 1) = 1,
- noz(1 + 1) = 2,
- noz(2 + 1) = 3,
...
- noz(7 + 1) = 8,
- noz(8 + 1) = 9,
- noz(9 + 1) = noz(10) = 1,
- hence a(1) = 9.
See
A306569 for the multiplicative variant.
A321475
Zeroless factorials (version 2): a(0) = 1, and for any n > 0, a(n) = noz(1 * noz(2 * ... * noz((n-1) * n))), where noz(n) = A004719(n) omits the zeros from n.
Original entry on oeis.org
1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 399168, 576, 82728, 879912, 2397168, 337968, 5924736, 8851949568, 143936352, 31644, 92589264, 118459638, 3698784, 1197539136, 2387625984, 954864, 236271168, 3573339984, 238453776, 69587928, 142275168, 33566976
Offset: 0
For n = 12:
- noz(11 * 12) = noz(132) = 132,
- noz(10 * 132) = noz(1320) = 132,
- noz(9 * 132) = noz(1188) = 1188,
- noz(8 * 1188) = noz(9504) = 954,
- noz(7 * 954) = noz(6678) = 6678,
- noz(6 * 6678) = noz(40068) = 468,
- noz(5 * 468) = noz(2340) = 234,
- noz(4 * 234) = noz(936) = 936,
- noz(3 * 936) = noz(2808) = 288,
- noz(2 * 288) = noz(576) = 576,
- noz(1 * 576) = noz(576) = 576,
- hence a(12) = 576.
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
A321475[n_] := If[n == 0, 1, Block[{k = n}, Nest[noz[--k * #] &, n, n-1]]];
Array[A321475, 50, 0] (* Paolo Xausa, May 20 2024 *)
-
a(n, base=10) = my (f=max(1, n)); forstep (k=n-1, 2, -1, f = fromdigits(select(sign, digits(f*k, base)), base)); f
A321480
Zeroless analog of triangular numbers (version 2): a(0) = 0, and for any n > 0, a(n) = noz(1 + noz(2 + ... + noz((n-1) + n))), where noz(n) = A004719(n) omits the zeros from n.
Original entry on oeis.org
0, 1, 3, 6, 1, 15, 3, 28, 9, 18, 19, 39, 6, 28, 15, 12, 1, 9, 99, 37, 39, 177, 64, 69, 39, 19, 72, 99, 37, 12, 69, 64, 87, 12, 289, 27, 54, 82, 39, 42, 19, 6, 57, 37, 27, 54, 82, 12, 69, 64, 69, 12, 64, 27, 27, 82, 12, 87, 289, 69, 39, 289, 72, 99, 64, 57, 24
Offset: 0
For n = 16:
- noz(15 + 16) = noz(31) = 31,
- noz(14 + 31) = noz(45) = 45,
- noz(13 + 45) = noz(58) = 58,
- noz(12 + 58) = noz(70) = 7,
- noz(11 + 7) = noz(18) = 18,
- noz(10 + 18) = noz(28) = 28,
- noz(9 + 28) = noz(37) = 37,
- noz(8 + 37) = noz(45) = 45,
- noz(7 + 45) = noz(52) = 52,
- noz(6 + 52) = noz(58) = 58,
- noz(5 + 58) = noz(63) = 63,
- noz(4 + 63) = noz(67) = 67,
- noz(3 + 67) = noz(70) = 7,
- noz(2 + 7) = noz(9) = 9,
- noz(1 + 9) = noz(10) = 1,
- hence a(16) = 1.
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
A321480[n_] := Block[{k = n}, Nest[noz[--k + #] &, n, Max[0, n-1]]];
Array[A321480,100,0] (* Paolo Xausa, Apr 17 2024 *)
-
a(n, base=10) = { my (t=n); forstep (k=n-1, 1, -1, t = fromdigits(select(sign, digits(t+k, base)), base)); t } \\ corrected by Rémy Sigrist, Apr 17 2024
a(10), a(20), a(30), a(40), a(50) and a(60) corrected by
Paolo Xausa, Apr 17 2024
Showing 1-10 of 54 results.
Comments