A242350
Multiply a(n-1) by 2 and drop all 0's.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 124, 248, 496, 992, 1984, 3968, 7936, 15872, 31744, 63488, 126976, 253952, 5794, 11588, 23176, 46352, 9274, 18548, 3796, 7592, 15184, 3368, 6736, 13472, 26944, 53888, 17776, 35552, 7114, 14228, 28456, 56912, 113824
Offset: 1
Term after 512 is 124 because 512*2=1024, and 1024 becomes 124 if all 0's are taken out.
- Michel Marcus, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
-
NestList[FromDigits[Select[IntegerDigits[2 #],#!=0&]]&,1,50] (* Harvey P. Dale, Oct 22 2018 *)
-
dropz(n)=d = digits(n); s = 0; for (i=1, #d, if (d[i], s = 10*s + d[i]);); s;
lista(nn) = a = 1; for (i=1, nn, print1(a, ", "); a = dropz(2*a);) \\ Michel Marcus, May 12 2014
A243657
Zeroless factorials: a(0)=1; thereafter a(n) = noz(n*a(n-1)), where noz(n) = A004719(n) omits the zeros from n.
Original entry on oeis.org
1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 42768, 513216, 667188, 934632, 141948, 2271168, 3869856, 6965748, 132349212, 264698424, 555866694, 1222967268, 28128247164, 67577931936, 16894482984, 439256557584, 1185992754768, 332779713354, 965611687266, 289683561798, 89819415738
Offset: 0
-
noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end;
t1:=[1]; for n from 1 to 50 do t1:=[op(t1),noz(n*t1[n])]; od: t1;
-
nxt[{n_,a_}]:={n+1,FromDigits[DeleteCases[IntegerDigits[a(n+1)],0]]}; NestList[nxt,{0,1},40][[;;,2]] (* Harvey P. Dale, Feb 13 2024 *)
-
from itertools import count, islice
def noz(n): return int(str(n).replace("0", ""))
def agen(): # generator of terms
yield (an:=1)
yield from (an:=noz(n*an) for n in count(1))
print(list(islice(agen(), 32))) # Michael S. Branicky, Jul 02 2024
A243063
Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61, 438, 499, 937, 1436, 2373, 389, 2762, 3151, 5913, 964, 6877, 7841, 14718, 22559, 37277, 59836, 97113, 156949, 25462, 182411, 27873, 21284, 49157, 7441, 56598, 6439, 6337, 12776, 19113, 31889, 512, 3241
Offset: 1
x(3) = x(1) + x(2) = 1 + 1 = 2.
x(4) = x(2) + x(3) = 1 + 2 = 3.
x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61.
x(16) = 377 + 61 = 438.
-
noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719
t1:=[1,1]; for n from 3 to 100 do t1:=[op(t1),noz(t1[n-1]+t1[n-2])]; od: t1; # N. J. A. Sloane, Jun 11 2014
-
Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], ?(# == 0 &)]] &, {1, 1}, 45] (* _Michael De Vlieger, Jun 27 2020 *)
nxt[{a_,b_}]:={b,FromDigits[DeleteCases[IntegerDigits[a+b],0]]}; NestList[nxt,{1,1},50][[All,1]] (* Harvey P. Dale, Sep 12 2022 *)
A373169
Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 1, 5, 1, 6, 12, 16, 6, 6, 1, 7, 15, 22, 25, 12, 7, 1, 8, 18, 28, 35, 36, 19, 8, 1, 9, 21, 34, 45, 51, 49, 27, 9, 1, 1, 24, 4, 55, 66, 7, 64, 36, 1, 1, 11, 18, 46, 29, 81, 91, 29, 81, 46, 2, 1, 12, 3, 43, 75, 6, 112, 12, 54, 1, 57, 3
Offset: 2
The array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, ... = A177274
3 | 1, 3, 6, 1, 6, 12, 19, 27, 36, 46, ... = A243658 (from n = 1)
4 | 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, ... = A370812
5 | 1, 5, 12, 22, 35, 51, 7, 29, 54, 82, ... = A373171
6 | 1, 6, 15, 28, 45, 66, 91, 12, 45, 82, ... = A373172
7 | 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, ...
8 | 1, 8, 21, 4, 29, 6, 43, 86, 135, 19, ...
9 | 1, 9, 24, 46, 75, 111, 154, 24, 81, 145, ...
10 | 1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...
... | \______ A373170 (main diagonal)
A004719 (from n = 2)
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];
Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]
-
noz(n) = fromdigits(select(sign, digits(n)));
T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));
matrix(7,7,n,k,T(n+1,k)) \\ Michel Marcus, May 30 2024
A370812
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 2*n - 1), where noz(n) = A004719(n).
Original entry on oeis.org
1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 22, 45, 7, 34, 63, 94, 127, 162, 199, 238, 279, 322, 367, 414, 463, 514, 567, 622, 679, 738, 799, 862, 927, 994, 163, 234, 37, 112, 189, 268, 349, 432, 517, 64, 153, 244, 337, 432, 529, 628, 729, 832, 937, 144, 253, 364, 477
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*2 - 1 + #] &, 1, 100]]
A373171
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 3*n - 2), where noz(n) = A004719(n).
Original entry on oeis.org
1, 5, 12, 22, 35, 51, 7, 29, 54, 82, 113, 147, 184, 224, 267, 313, 362, 414, 469, 527, 588, 652, 719, 789, 862, 938, 117, 199, 284, 372, 463, 557, 654, 754, 857, 963, 172, 284, 399, 517, 638, 762, 889, 119, 252, 388, 527, 669, 814, 962, 1113, 1267, 1424, 1584
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*3 - 2 + #] &, 1, 100]]
-
noz(n) = fromdigits(select(sign, digits(n))); \\ A004719
lista(nn) = my(va=vector(nn)); for (n=1, nn, va[n] = if (n==1, 1, noz(va[n-1] + 3*n - 2))); va; \\ Michel Marcus, Jun 03 2024
A373172
a(1) = 1; for n >= 2, a(n) = noz(a(n-1) + 4*n - 3), where noz(n) = A004719(n).
Original entry on oeis.org
1, 6, 15, 28, 45, 66, 91, 12, 45, 82, 123, 168, 217, 27, 84, 145, 21, 9, 82, 159, 24, 19, 18, 111, 28, 129, 234, 343, 456, 573, 694, 819, 948, 181, 318, 459, 64, 213, 366, 523, 684, 849, 118, 291, 468, 649, 834, 123, 316, 513, 714, 919, 1128, 1341, 1558, 1779
Offset: 1
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
Block[{n = 1}, NestList[noz[++n*4 - 3 + #] &, 1, 100]]
nxt[{n_,a_}]:={n+1,FromDigits[DeleteCases[IntegerDigits[a+4n+1],0]]}; NestList[nxt,{1,1},60][[;;,2]] (* Harvey P. Dale, Jul 08 2024 *)
-
noz(n) = fromdigits(select(sign, digits(n))); \\ A004719
lista(nn) = my(va=vector(nn)); for (n=1, nn, va[n] = if (n==1, 1, noz(va[n-1] + 4*n - 3))); va; \\ Michel Marcus, Jun 03 2024
A321480
Zeroless analog of triangular numbers (version 2): a(0) = 0, and for any n > 0, a(n) = noz(1 + noz(2 + ... + noz((n-1) + n))), where noz(n) = A004719(n) omits the zeros from n.
Original entry on oeis.org
0, 1, 3, 6, 1, 15, 3, 28, 9, 18, 19, 39, 6, 28, 15, 12, 1, 9, 99, 37, 39, 177, 64, 69, 39, 19, 72, 99, 37, 12, 69, 64, 87, 12, 289, 27, 54, 82, 39, 42, 19, 6, 57, 37, 27, 54, 82, 12, 69, 64, 69, 12, 64, 27, 27, 82, 12, 87, 289, 69, 39, 289, 72, 99, 64, 57, 24
Offset: 0
For n = 16:
- noz(15 + 16) = noz(31) = 31,
- noz(14 + 31) = noz(45) = 45,
- noz(13 + 45) = noz(58) = 58,
- noz(12 + 58) = noz(70) = 7,
- noz(11 + 7) = noz(18) = 18,
- noz(10 + 18) = noz(28) = 28,
- noz(9 + 28) = noz(37) = 37,
- noz(8 + 37) = noz(45) = 45,
- noz(7 + 45) = noz(52) = 52,
- noz(6 + 52) = noz(58) = 58,
- noz(5 + 58) = noz(63) = 63,
- noz(4 + 63) = noz(67) = 67,
- noz(3 + 67) = noz(70) = 7,
- noz(2 + 7) = noz(9) = 9,
- noz(1 + 9) = noz(10) = 1,
- hence a(16) = 1.
-
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
A321480[n_] := Block[{k = n}, Nest[noz[--k + #] &, n, Max[0, n-1]]];
Array[A321480,100,0] (* Paolo Xausa, Apr 17 2024 *)
-
a(n, base=10) = { my (t=n); forstep (k=n-1, 1, -1, t = fromdigits(select(sign, digits(t+k, base)), base)); t } \\ corrected by Rémy Sigrist, Apr 17 2024
a(10), a(20), a(30), a(40), a(50) and a(60) corrected by
Paolo Xausa, Apr 17 2024
A371911
Zeroless analog of tribonacci numbers.
Original entry on oeis.org
1, 1, 1, 3, 5, 9, 17, 31, 57, 15, 13, 85, 113, 211, 49, 373, 633, 155, 1161, 1949, 3265, 6375, 11589, 21229, 39193, 7211, 67633, 11437, 86281, 165351, 26369, 2781, 19451, 4861, 2793, 2715, 1369, 6877, 1961, 127, 8965, 1153, 1245, 11363, 13761, 26369, 51493, 91623, 169485, 31261
Offset: 0
a(9) = Zr(a(8) + a(7) + a(6)) = Zr(17 + 31 + 57) = Zr(105) = 15.
-
a[0]=a[1]=a[2]=1; a[n_]:=FromDigits[DeleteCases[IntegerDigits[a[n-1]+a[n-2]+a[n-3]],0]]; Array[a,50,0] (* Stefano Spezia, Apr 12 2024 *)
-
def a(n):
a, b, c = 1, 1, 1
for _ in range(n):
a, b, c = b, c, int(str(a+b+c).replace('0', ''))
return a
-
# faster for initial segment of sequence
from itertools import islice
def agen(): # generator of terms
a, b, c = 1, 1, 1
while True: yield a; a, b, c = b, c, int(str(a+b+c).replace("0", ""))
print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 13 2024
A374265
Minimized zeroless factorials.
Original entry on oeis.org
1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 42768, 47916, 62298, 872172, 13968, 221688, 57996, 143928, 134712, 269154, 563994, 1247868, 286344, 877356, 171864, 513324, 1252728, 3414474, 914616, 41868, 119178, 454716, 127188, 527832, 15642, 91332, 192924, 125892, 29718
Offset: 0
a(12) = 47916 via the path: 1, 1, 2, 6, 24, 12, 72, 504, 4032, 36288, 362880, 3991680, 47916.
-
def a(n):
reach = {1}
for i in range(1, n+1):
newreach = set()
for m in reach:
newreach.update([m*i, int(str(m*i).replace('0', ''))])
reach = newreach
return min(reach)
Showing 1-10 of 12 results.
Comments