cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001801 Coefficients of Legendre polynomials.

Original entry on oeis.org

3, 15, 105, 315, 6930, 18018, 90090, 218790, 2078505, 4849845, 22309287, 50702925, 1825305300, 4071834900, 18032411700, 39671305740, 347123925225, 755505013725, 3273855059475, 7064634602025, 121511715154830, 260382246760350, 1112542327066950, 2370198870707850, 20146690401016725
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A004733.
Diagonal 3 of triangle A100258.

Programs

  • Magma
    A001801:= func< n | 3*Binomial(n+3,3)*Catalan(n+2)*2^(Valuation(Factorial(n+4),2)-n-4) >;
    [A001801(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
    
  • Mathematica
    A001801[n_]:= 3*2^(2*n+1)*Binomial[n+3/2, n]/2^DigitCount[n+4,2,1];
    Table[A001801[n], {n,0,40}] (* G. C. Greubel, Apr 26 2025 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(pollegendre(n+4),n)*2^valuation((n\2*2+4)!,2))
    
  • SageMath
    def A001801(n): return 3*2^(n-3)*binomial(n+3/2,n)*2^valuation(factorial(n+4), 2)
    print([A001801(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025

Formula

a(n) = 3*2^(n-3)*binomial(n + 3/2, n)*2^A011371(n+4). - G. C. Greubel, Apr 26 2025

Extensions

More terms from Michael Somos, Oct 25 2002

A004732 Numerator of n!!/(n+3)!!.

Original entry on oeis.org

1, 1, 2, 1, 8, 5, 16, 7, 128, 21, 256, 33, 1024, 429, 2048, 715, 32768, 2431, 65536, 4199, 262144, 29393, 524288, 52003, 4194304, 185725, 8388608, 334305, 33554432, 9694845, 67108864, 17678835, 2147483648
Offset: 0

Views

Author

Keywords

References

  • S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996.

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,r;
      m:= floor(n/2);
      if n::even then 2^(2*m - padic:-ordp(binomial(2*m+1,m),2) - padic:-ordp(m+1,2))
      else
        r:= binomial(2*m+2,m+1)/(m+2);
        r/2^padic:-ordp(r,2);
    fi
    end proc:
    map(f, [$0..50]); # Robert Israel, Jan 07 2019
  • Mathematica
    Numerator[Table[n!!/(n+3)!!,{n,0,40}]] (* Harvey P. Dale, Nov 26 2015 *)
  • PARI
    a(n) = numerator(prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor((n+2)/2), n+3-2*i)) \\ Michel Marcus, May 24 2013

Formula

From Robert Israel, Jan 07 2019: (Start)
a(2*m) = 2^(2*m+1 - A048881(m) - A007814(m+1)).
a(2*m+1) = A000265(A000108(m+1)). (End)
Showing 1-2 of 2 results.