A004755 Binary expansion starts 11.
3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1
Examples
12 in binary is 1100, so 12 is in the sequence.
Links
- Kenny Lau, Table of n, a(n) for n = 1..16383 (first 1023 terms from T. D. Noe)
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a004755 n = a004755_list !! (n-1) a004755_list = 3 : concat (transpose [zs, map (+ 1) zs]) where zs = map (* 2) a004755_list -- Reinhard Zumkeller, Dec 04 2015
-
Maple
a:= proc(n) n+2*2^floor(log(n)/log(2)) end: seq(a(n),n=1..60); # Muniru A Asiru, Oct 16 2018
-
Mathematica
Flatten[Table[FromDigits[#,2]&/@(Join[{1,1},#]&/@Tuples[{0,1},n]),{n,0,5}]] (* Harvey P. Dale, Feb 05 2015 *)
-
PARI
a(n)=n+2*2^floor(log(n)/log(2))
-
PARI
is(n)=n>2 && binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
-
Python
f = open('b004755.txt', 'w') lo = 3 hi = 4 i = 1 while i<16384: for x in range(lo,hi): f.write(str(i)+" "+str(x)+"\n") i += 1 lo <<= 1 hi <<= 1 # Kenny Lau, Jul 05 2016
-
Python
def A004755(n): return n+(1<
Chai Wah Wu, Jul 13 2022
Formula
a(2n) = 2*a(n), a(2n+1) = 2*a(n) + 1 + 2*[n==0].
a(n) = 2n + A080079(n). - Benoit Cloitre, Feb 22 2003
G.f.: (1/(1+x)) * (1 + Sum_{k>=0, t=x^2^k} 2^k*(2t+t^2)/(1+t)).
a(n) = n + 2^(floor(log_2(n)) + 1) = n + A062383(n). - Franklin T. Adams-Watters, Oct 23 2006
a(2^m+k) = 2^(m+1) + 2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
Extensions
Edited by Ralf Stephan, Oct 12 2003
Comments