cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005010 a(n) = 9*2^n.

Original entry on oeis.org

9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 18432, 36864, 73728, 147456, 294912, 589824, 1179648, 2359296, 4718592, 9437184, 18874368, 37748736, 75497472, 150994944, 301989888, 603979776, 1207959552, 2415919104, 4831838208, 9663676416, 19327352832
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Row sums of (8, 1)-Pascal triangle A093565. - N. J. A. Sloane, Sep 22 2004
The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005
For n>=1, a(n) is equal to the number of functions f:{1,2,...,n+2}->{1,2,3} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+2} and fixed y_1, y_2,...,y_n in {1,2,3} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
9 times powers of 2. - Omar E. Pol, Dec 16 2008
a(n) = A173786(n+3,n) for n>2. - Reinhard Zumkeller, Feb 28 2010
Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s0(m) and s1(m) the sums of the divisors that are congruent to 2 and 3 (mod 4) respectively. For n>0, the sequence a(n) lists the numbers m such that s0(m) = 26 and s1(m) = 3. - Michel Lagneau, Feb 10 2017

Crossrefs

Programs

Formula

a(n) = 9*2^n.
G.f.: 9/(1-2*x).
a(n) = A118416(n+1,5) for n>4. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), n>0; a(0)=9. - Philippe Deléham, Nov 23 2008
a(n) = 9*A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = 3*A007283(n). - Omar E. Pol, Jul 14 2015
E.g.f.: 9*exp(2*x). - Elmo R. Oliveira, Aug 16 2024