cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A005009 a(n) = 7*2^n.

Original entry on oeis.org

7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0

Views

Author

Keywords

Comments

The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), this sequence (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Row sums of (6, 1)-Pascal triangle A093563 and of (1, 6)-Pascal triangle A096956, n>=1.

Programs

Formula

G.f.: 7/(1-2*x).
a(n) = A118416(n+1,4) for n > 3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), for n > 0, with a(0)=7 . - Philippe Deléham, Nov 23 2008
a(n) = 7 * A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = A173787(n+3,n). - Reinhard Zumkeller, Feb 28 2010
Intersection of A014311 and A212191: all terms and their squares are the sum of exactly three distinct powers of 2, A000120(a(n)) = A000120(a(n)^2) = 3. - Reinhard Zumkeller, May 03 2012
G.f.: 2/x/G(0) - 1/x + 9, where G(k)= 1 + 1/(1 - x*(7*k+2)/(x*(7*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
E.g.f.: 7*exp(2*x). - Stefano Spezia, May 15 2021

A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Comments

The triangle pertaining to this sequence has the property that every row, every column and every diagonal contains a nontrivial geometric progression. More interestingly every line joining any two elements contains a nontrivial geometric progression. - Amarnath Murthy, Jan 02 2002
Kappraff states (pp. 148-149): "I shall refer to this as Nicomachus' table since an identical table of numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 A.D.)" The table was rediscovered during the Italian Renaissance by Leon Battista Alberti, who incorporated the numbers in dimensions of his buildings and in a system of musical proportions. Kappraff states "Therefore a room could exhibit a 4:6 or 6:9 ratio but not 4:9. This ensured that ratios of these lengths would embody musical ratios". - Gary W. Adamson, Aug 18 2003
After Nichomachus and Alberti several Renaissance authors described this table. See for instance Pierre de la Ramée in 1569 (facsimile of a page of his Arithmetic Treatise in Latin in the links section). - Olivier Gérard, Jul 04 2013
The triangle sums, see A180662 for their definitions, link Nicomachus's table with eleven different sequences, see the crossrefs. It is remarkable that these eleven sequences can be described with simple elegant formulas. The mirror of this triangle is A175840. - Johannes W. Meijer, Sep 22 2010
The diagonal sums Sum_{k} T(n - k, k) give A167762(n + 2). - Michael Somos, May 28 2012
Where d(n) is the divisor count function, then d(T(i,j)) = A003991, the rows of which sum to the tetrahedral numbers A000292(n+1). For example, the sum of the divisors of row 4 of this triangle (i = 4), gives d(16) + d(24) + d(36) + d(54) + d(81) = 5 + 8 + 9 + 8 + 5 = 35 = A000292(5). In fact, where p and q are distinct primes, the aforementioned relationship to the divisor function and tetrahedral numbers can be extended to any triangle of numbers in which the i-th row is of form {p^(i-j)*q^j, 0<=j<=i}; i >= 0 (e.g., A003593, A003595). - Raphie Frank, Nov 18 2012, corrected Dec 07 2012
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then 2*x and 3*x are in S, and duplicates are deleted as they occur; see A232559. - Clark Kimberling, Nov 28 2013
Partial sums of rows produce Stirling numbers of the 2nd kind: A000392(n+2) = Sum_{m=1..(n^2+n)/2} a(m). - Fred Daniel Kline, Sep 22 2014
A permutation of A003586. - L. Edson Jeffery, Sep 22 2014
Form a word of length i by choosing a (possibly empty) word on alphabet {0,1} then concatenating a word of length j on alphabet {2,3,4}. T(i,j) is the number of such words. - Geoffrey Critzer, Jun 23 2016
Form of Zorach additive triangle (see A035312) where each number is sum of west and northwest numbers, with the additional condition that each number is GCD of the two numbers immediately below it. - Michel Lagneau, Dec 27 2018

Examples

			The start of the sequence as a triangular array read by rows:
   1
   2   3
   4   6   9
   8  12  18  27
  16  24  36  54  81
  32  48  72 108 162 243
  ...
The start of the sequence as a table T(n,k) n, k > 0:
    1    2    4    8   16   32 ...
    3    6   12   24   48   96 ...
    9   18   36   72  144  288 ...
   27   54  108  216  432  864 ...
   81  162  324  648 1296 2592 ...
  243  486  972 1944 3888 7776 ...
  ...
- _Boris Putievskiy_, Jan 08 2013
		

References

  • Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
  • Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.

Crossrefs

Cf. A001047 (row sums), A000400 (central terms), A013620, A007318.
Triangle sums (see the comments): A001047 (Row1); A015441 (Row2); A005061 (Kn1, Kn4); A016133 (Kn2, Kn3); A016153 (Fi1, Fi2); A016140 (Ca1, Ca4); A180844 (Ca2, Ca3); A180845 (Gi1, Gi4); A180846 (Gi2, Gi3); A180847 (Ze1, Ze4); A016185 (Ze2, Ze3). - Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum: A000392; square arrays cumulative sum: A160869. Antidiagonal products: 6^A000217; antidiagonal cumulative products: 6^A000292; square arrays products: 6^A005449; square array cumulative products: 6^A006002.

Programs

  • Haskell
    a036561 n k = a036561_tabf !! n !! k
    a036561_row n = a036561_tabf !! n
    a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    /* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
  • Maple
    A036561 := proc(n,k): 2^(n-k)*3^k end:
    seq(seq(A036561(n,k),k=0..n),n=0..9);
    T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
    # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
  • Mathematica
    Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
  • PARI
    for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
    

Formula

T(n,k) = A013620(n,k)/A007318(n,k). - Reinhard Zumkeller, May 14 2006
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024

A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Comments

Essentially the same as A048645. - T. D. Noe, Mar 28 2011

Examples

			Triangle begins as:
     2;
     3,    4;
     5,    6,    8;
     9,   10,   12,   16;
    17,   18,   20,   24,   32;
    33,   34,   36,   40,   48,   64;
    65,   66,   68,   72,   80,   96,  128;
   129,  130,  132,  136,  144,  160,  192,  256;
   257,  258,  260,  264,  272,  288,  320,  384,  512;
   513,  514,  516,  520,  528,  544,  576,  640,  768, 1024;
  1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
		

Crossrefs

Programs

  • Magma
    [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
  • PARI
    A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
    
  • Python
    from math import isqrt, comb
    def A173786(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return (1<Chai Wah Wu, Jun 20 2025
  • Sage
    flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
    

Formula

1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).

Extensions

Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010

A110286 a(n) = 15*2^n.

Original entry on oeis.org

15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 122880, 245760, 491520, 983040, 1966080, 3932160, 7864320, 15728640, 31457280, 62914560, 125829120, 251658240, 503316480, 1006632960, 2013265920, 4026531840, 8053063680, 16106127360
Offset: 0

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).

Programs

Formula

G.f.: 15/(1-2x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*15 = A007283(n)*5 = A020714(n)*3. - Omar E. Pol, Dec 17 2008
a(n) = A173787(n+4,n). - Reinhard Zumkeller, Feb 28 2010
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
a(n) = 2*a(n-1) (with a(0)=15). - Vincenzo Librandi, Dec 26 2010
E.g.f.: 15*exp(2*x). - Stefano Spezia, May 15 2021

Extensions

Edited by Omar E. Pol, Dec 16 2008

A030067 The "Semi-Fibonacci sequence": a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 6, 3, 9, 2, 11, 5, 16, 1, 17, 6, 23, 3, 26, 9, 35, 2, 37, 11, 48, 5, 53, 16, 69, 1, 70, 17, 87, 6, 93, 23, 116, 3, 119, 26, 145, 9, 154, 35, 189, 2, 191, 37, 228, 11, 239, 48, 287, 5, 292, 53, 345, 16, 361, 69, 430, 1, 431, 70, 501, 17, 518, 87, 605, 6, 611, 93
Offset: 1

Keywords

Comments

This is the "semi-Fibonacci sequence". The distinct numbers that appear are called "semi-Fibonacci numbers", and are given in A030068.
a(2n+1) >= a(2n-1) + 1 is monotonically increasing. a(2n)/n can be arbitrarily small, as a(2^n) = 1. There are probably an infinite number of primes in the sequence. - Jonathan Vos Post, Mar 28 2006
From Robert G. Wilson v, Jan 17 2014: (Start)
Positions where k occurs:
k: sequence
-:-----------------------------
1: A000079;
2: 3*A000079 = A007283;
3: 5*A000079 = A020714;
4: none in the first 10^6 terms;
5: 7*A000079 = A005009;
6: 9*A000079 = A005010;
7: none in the first 10^6 terms;
8: none in the first 10^6 terms;
9: 11*A000079 = A005015;
10: none in the first 10^6 terms;
11: 13*A000079 = A005029;
12: none in the first 10^6 terms;
(End)
Any integer N which occurs in this sequence first occurs as an odd-indexed term a(2k-1) = A030068(k-1), and thereafter at indices (2k-1)*2^j, j=1,2,3,... (Both of these statements follow immediately from the definition of even-indexed terms.) No N can occur a second time as an odd-indexed term: This follows from the definition of these terms, a(2n+1) = a(2n) + a(2n-1) = a(2n-1) + a(n), which shows that the subsequence of odd-indexed terms (A030068) is strictly increasing, and therefore equal to the range (or: set) of the semi-Fibonacci numbers. - M. F. Hasler, Mar 24 2017
The lines in the logarithmic scatterplot of the sequence corresponds to sets of indices with the same 2-adic valuation. - Rémy Sigrist, Nov 27 2017
Define the partition subsum polynomial of an integer partition m of n where m = (m_1, m_2, ...m_k) by ps(m,x) = Product_{i=1..k} (1+x^m_i). Expanding ps(m,x) gives 1+a_1 x+a_2 x^2+...+a_n x^n, where a_j is the number of ways to form the subsum j from the parts of m. Then the number of partitions m of n for which ps(m,x) has no repeated root is a(n). - George Beck, Nov 07 2018

Examples

			a(1) = 1 by definition.
a(2) = a(1) = 1.
a(3) = 1 + 1 = 2.
a(4) = a(2) = 1.
a(5) = 2 + 1 = 3.
a(6) = a(3) = 2.
a(7) = 3 + 2 = 5.
a(8) = a(4) = 1.
a(9) = 5 + 1 = 6.
a(10) = a(5) = 3.
		

Crossrefs

See A109671 for a variant.

Programs

  • Haskell
    import Data.List (transpose)
    a030067 n = a030067_list !! (n-1)
    a030067_list = concat $ transpose [scanl (+) 1 a030067_list, a030067_list]
    -- Reinhard Zumkeller, Jul 21 2013, Jul 07 2013
    
  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(1) elif n mod 2 = 0 then RETURN(f(n/2)) else RETURN(f(n-1)+f(n-2)); fi; end;
  • Mathematica
    semiFibo[1] = 1; semiFibo[n_?EvenQ] := semiFibo[n] = semiFibo[n/2]; semiFibo[n_?OddQ] := semiFibo[n] = semiFibo[n - 1] + semiFibo[n - 2]; Table[semiFibo[n], {n, 80}] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    a(n) = if(n==1, 1, if(n%2 == 0, a(n/2), a(n-1) + a(n-2)));
    vector(100, n, a(n)) \\ Altug Alkan, Oct 12 2015
    
  • Python
    a=[1]; [a.append(a[-2]+a[-1] if n%2 else a[n//2-1]) for n in range(2, 75)]
    print(a) # Michael S. Branicky, Jul 07 2022

Formula

Theorem: a(2n+1) - a(2n-1) = a(n). Proof: a(2n+1) - a(2n-1) = a(2n) + a(2n-1) - a(2n-2) - a(2n-3) = a(n) - a(n-1) + a(n-1) (induction) = a(n). - N. J. A. Sloane, May 02 2010
a(2^n - 1) = A129092(n) for n >= 1, where A129092 forms the row sums and column 0 of triangle A129100, which is defined by the nice property that column 0 of matrix power A129100^(2^k) = column k of A129100 for k > 0. - Paul D. Hanna, Dec 03 2008
G.f. g(x) satisfies (1-x^2) g(x) = (1+x-x^2) g(x^2) + x. - Robert Israel, Mar 23 2017

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.

Original entry on oeis.org

1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums give A014477: Sum_{k=1..n} T(n,k) = A014477(n-1);
central terms give A118415; T(2*k-1,k) = A058962(k-1);
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
T(n,n) = A014480(n-1) = A118413(n,n);
A001511(T(n,k)) = A002024(n,k);
A003602(T(n,k)) = A002260(n,k).
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024

Examples

			Triangle begins:
   1;
   2,   6;
   4,  12,  20;
   8,  24,  40,  56;
  16,  48,  80, 112, 144;
  32,  96, 160, 224, 288, 352;
  64, 192, 320, 448, 576, 704, 832;
		

Crossrefs

Programs

  • Haskell
    a118416 n k = a118416_tabl !! (n-1) !! (k-1)
    a118416_row 1 = [1]
    a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
    a118416_tabl = map a118416_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Maple
    A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
  • Mathematica
    Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
  • Python
    from math import isqrt
    def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025

Formula

T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).

A252574 T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

702, 843, 742, 1069, 868, 890, 1694, 1795, 1558, 1469, 2985, 3441, 4168, 3286, 2637, 5401, 8980, 9051, 10885, 7610, 4583, 9936, 23007, 30532, 25882, 34532, 17261, 8279, 18972, 47737, 92725, 107651, 88844, 96099, 39419, 15476, 36144, 133142, 208375
Offset: 1

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Table starts
...702....843....1069.....1694......2985.......5401........9936........18972
...742....868....1795.....3441......8980......23007.......47737.......133142
...890...1558....4168.....9051.....30532......92725......208375.......715437
..1469...3286...10885....25882....107651.....395500......959944......4006901
..2637...7610...34532....88844....498696....2538669.....6590930.....37656158
..4583..17261...96099...263046...1887578...11285381....31059674....225598956
..8279..39419..275252...802760...7115253...53055996...155864925...1380518004
.15476..94224..896803..2655311..31894631..337833222...994640586..12185963853
.28007.218717.2561903..7860183.122743127.1537313257..4728064653..74805119002
.51488.504824.7521424.24273030.470091119.7468646942.24277561799.469290271873

Examples

			Some solutions for n=4 k=4
..3..2..2..3..2..1....0..2..0..0..2..0....0..0..2..0..0..2....0..0..2..0..0..2
..0..2..0..0..2..0....1..1..3..1..1..0....3..2..1..3..1..2....3..2..2..3..2..1
..0..0..2..0..0..2....2..0..0..2..0..0....0..2..0..0..2..0....0..2..0..0..2..0
..3..1..1..3..2..1....0..2..0..0..2..0....0..0..2..0..0..2....0..0..2..0..0..2
..0..2..0..0..2..0....2..1..3..2..2..3....3..1..2..3..1..2....3..1..2..3..2..1
..0..0..2..0..0..2....2..0..0..1..0..0....0..2..0..0..2..0....0..2..0..0..1..0
		

Crossrefs

Column 1 is A005010(n-1)
Column 2 is A052548(n+3)
Row 1 is A083706(n+1)

Formula

Empirical for column k:
k=1: [linear recurrence of order 54] for n>60
k=2: [order 45] for n>50
k=3: [order 39] for n>46
k=4: [order 54] for n>60
k=5: [order 84] for n>89
Empirical for row n:
n=1: [linear recurrence of order 33] for n>43
n=2: [order 27] for n>34
n=3: [order 24] for n>32
n=4: [order 24] for n>31
n=5: [order 24] for n>32
n=6: [order 42] for n>50
n=7: [order 36] for n>45

A093565 (8,1) Pascal triangle.

Original entry on oeis.org

1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
Offset: 0

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(8;n,m) gives in the columns m>=1 the figurate numbers based on A017077, including the decagonal numbers A001107,(see the W. Lang link).
This is the eighth member, d=8, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-4, for d=1..7.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+7*z)/(1-(1+x)*z).
The SW-NE diagonals give A022098(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 7. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins
  [1];
  [8,  1];
  [8,  9,  1];
  [8, 17, 10,  1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Row sums: A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
The column sequences give for m=1..9: A017077, A001107 (decagonal), A007585, A051797, A051878, A050404, A052226, A056001, A056122.
Cf. A093644 (d=9).

Programs

  • Haskell
    a093565 n k = a093565_tabl !! n !! k
    a093565_row n = a093565_tabl !! n
    a093565_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [8, 1]
    -- Reinhard Zumkeller, Aug 31 2014

Formula

a(n, m)=F(8;n-m, m) for 0<= m <= n, otherwise 0, with F(8;0, 0)=1, F(8;n, 0)=8 if n>=1 and F(8;n, m):=(8*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=8 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+7*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 7*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 17*x + 10*x^2/2! + x^3/3!) = 8 + 25*x + 52*x^2/2! + 90*x^3/3! + 140*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A250783 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

9, 21, 18, 46, 46, 36, 99, 106, 96, 72, 209, 238, 230, 196, 144, 436, 518, 534, 482, 396, 288, 901, 1106, 1194, 1152, 990, 796, 576, 1849, 2326, 2604, 2640, 2426, 2010, 1596, 1152, 3774, 4838, 5568, 5882, 5688, 5028, 4054, 3196, 2304, 7671, 9978, 11732, 12796
Offset: 1

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Table starts
....9....21....46....99....209....436.....901....1849....3774.....7671....15541
...18....46...106...238....518...1106....2326....4838....9978....20446....41686
...36....96...230...534...1194...2604....5568...11732...24442....50482...103566
...72...196...482..1152...2640...5882...12796...27344...57610...120060...248072
..144...396...990..2426...5688..12950...28692...62274..132890...279864...583196
..288...796..2010..5028..12036..27986...63184..139436..301786...643164..1353544
..576..1596..4054.10306..25126..59590..137082..307762..676266..1460260..3107536
.1152..3196..8146.20960..51904.125334..293588..670608.1496970..3278004..7061504
.2304..6396.16334.42394.106344.260916..621664.1444162.3275574..7278104.15884220
.4608.12796.32714.85420.216500.538538.1303276.3076788.7089558.15987988.35370676

Examples

			Some solutions for n=4 k=4
..0..0..1..0..0....0..0..0..1..0....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..1....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
		

Crossrefs

Column 1 is A005010(n-1)
Row 1 is A027973(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1); a(n) = 9*2^(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 25*2^(n-1) -4
k=3: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
k=4: a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5)
k=5: a(n) = 8*a(n-1) -27*a(n-2) +50*a(n-3) -55*a(n-4) +36*a(n-5) -13*a(n-6) +2*a(n-7)
k=6: [order 9]
k=7: [order 11]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3)
n=2: a(n) = 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4)
n=3: a(n) = 5*a(n-1) -8*a(n-2) +3*a(n-3) +3*a(n-4) -2*a(n-5)
n=4: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +11*a(n-4) -5*a(n-5) -3*a(n-6) +2*a(n-7)
n=5: [order 8]
n=6: [order 9]
n=7: [order 10]
Showing 1-10 of 37 results. Next