Original entry on oeis.org
7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2), this sequence (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
Row sums of (6, 1)-Pascal triangle
A093563 and of (1, 6)-Pascal triangle
A096956, n>=1.
A036561
Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.
Original entry on oeis.org
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The start of the sequence as a triangular array read by rows:
1
2 3
4 6 9
8 12 18 27
16 24 36 54 81
32 48 72 108 162 243
...
The start of the sequence as a table T(n,k) n, k > 0:
1 2 4 8 16 32 ...
3 6 12 24 48 96 ...
9 18 36 72 144 288 ...
27 54 108 216 432 864 ...
81 162 324 648 1296 2592 ...
243 486 972 1944 3888 7776 ...
...
- _Boris Putievskiy_, Jan 08 2013
- Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
- Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.
- Reinhard Zumkeller and Matthew House, Rows n = 0..300 of triangle, flattened [Rows 0 through 120 were computed by Reinhard Zumkeller; rows 121 through 300 by Matthew House, Jul 09 2015]
- Fred Daniel Kline, How do I convert this Nicomachus' Triangle to one with edges?
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Pierre de la Ramée (Petrus Ramus), P. Rami Arithmeticae (anno 1569) Liber 2, Cap. XVI "De inventione continue proportionalium" p.46 (leaf 0055) describes this integer triangle in a layout close to the current OEIS 'tabl' layout.
- Marko Riedel, Proof of identity by Egorychev method.
- Thomas Scheuerle, Version of this triangle from Boethius (480-524), Anicius Manlius Severinus Boethius, De institutione arithmetica, Medeltidshandskrift 1 (Mh 1), Lund University Library, early 10th century, page 4r.
- Robert Sedgewick, Analysis of shellsort and related algorithms, Fourth European Symposium on Algorithms, Barcelona, September, 1996.
Triangle sums (see the comments):
A001047 (Row1);
A015441 (Row2);
A005061 (Kn1, Kn4);
A016133 (Kn2, Kn3);
A016153 (Fi1, Fi2);
A016140 (Ca1, Ca4);
A180844 (Ca2, Ca3);
A180845 (Gi1, Gi4);
A180846 (Gi2, Gi3);
A180847 (Ze1, Ze4);
A016185 (Ze2, Ze3). -
Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum:
A000392; square arrays cumulative sum:
A160869. Antidiagonal products: 6^
A000217; antidiagonal cumulative products: 6^
A000292; square arrays products: 6^
A005449; square array cumulative products: 6^
A006002.
-
a036561 n k = a036561_tabf !! n !! k
a036561_row n = a036561_tabf !! n
a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
-- Reinhard Zumkeller, Jun 08 2013
-
/* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
-
A036561 := proc(n,k): 2^(n-k)*3^k end:
seq(seq(A036561(n,k),k=0..n),n=0..9);
T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
# Johannes W. Meijer, Sep 22 2010, Sep 10 2011
-
Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
-
for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
-
{T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
A173786
Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0
Triangle begins as:
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
129, 130, 132, 136, 144, 160, 192, 256;
257, 258, 260, 264, 272, 288, 320, 384, 512;
513, 514, 516, 520, 528, 544, 576, 640, 768, 1024;
1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
-
[2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
-
Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
-
A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
-
from math import isqrt, comb
def A173786(n):
a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
return (1<Chai Wah Wu, Jun 20 2025
-
flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
A110286
a(n) = 15*2^n.
Original entry on oeis.org
15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 122880, 245760, 491520, 983040, 1966080, 3932160, 7864320, 15728640, 31457280, 62914560, 125829120, 251658240, 503316480, 1006632960, 2013265920, 4026531840, 8053063680, 16106127360
Offset: 0
A030067
The "Semi-Fibonacci sequence": a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 1, 6, 3, 9, 2, 11, 5, 16, 1, 17, 6, 23, 3, 26, 9, 35, 2, 37, 11, 48, 5, 53, 16, 69, 1, 70, 17, 87, 6, 93, 23, 116, 3, 119, 26, 145, 9, 154, 35, 189, 2, 191, 37, 228, 11, 239, 48, 287, 5, 292, 53, 345, 16, 361, 69, 430, 1, 431, 70, 501, 17, 518, 87, 605, 6, 611, 93
Offset: 1
a(1) = 1 by definition.
a(2) = a(1) = 1.
a(3) = 1 + 1 = 2.
a(4) = a(2) = 1.
a(5) = 2 + 1 = 3.
a(6) = a(3) = 2.
a(7) = 3 + 2 = 5.
a(8) = a(4) = 1.
a(9) = 5 + 1 = 6.
a(10) = a(5) = 3.
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Abdulaziz M. Alanazi, Augustine O. Munagi and Darlison Nyirenda, Power Partitions and Semi-m-Fibonacci Partitions, arXiv:1910.09482 [math.CO], 2019.
- George E. Andrews, Binary and Semi-Fibonacci Partitions, Journal of Ramanujan Society of Mathematics and Mathematics Sciences, honoring A.K. Agarwal's 70th birthday, 7:1(2019), 01-06.
- Cristina Ballantine and George Beck, Partitions enumerated by self-similar sequences, arXiv:2303.11493 [math.CO], 2023.
- George Beck, Semi-Fibonacci Partitions
- Rémy Sigrist, Colored logarithmic scatterplot of the first 10000 terms (where the color is function of the 2-adic valuation of n)
-
import Data.List (transpose)
a030067 n = a030067_list !! (n-1)
a030067_list = concat $ transpose [scanl (+) 1 a030067_list, a030067_list]
-- Reinhard Zumkeller, Jul 21 2013, Jul 07 2013
-
f:=proc(n) option remember; if n=1 then RETURN(1) elif n mod 2 = 0 then RETURN(f(n/2)) else RETURN(f(n-1)+f(n-2)); fi; end;
-
semiFibo[1] = 1; semiFibo[n_?EvenQ] := semiFibo[n] = semiFibo[n/2]; semiFibo[n_?OddQ] := semiFibo[n] = semiFibo[n - 1] + semiFibo[n - 2]; Table[semiFibo[n], {n, 80}] (* Jean-François Alcover, Aug 19 2013 *)
-
a(n) = if(n==1, 1, if(n%2 == 0, a(n/2), a(n-1) + a(n-2)));
vector(100, n, a(n)) \\ Altug Alkan, Oct 12 2015
-
a=[1]; [a.append(a[-2]+a[-1] if n%2 else a[n//2-1]) for n in range(2, 75)]
print(a) # Michael S. Branicky, Jul 07 2022
A048573
a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0
G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wieb Bosma, Signed bits and fast exponentiation, Journal de théorie des nombres de Bordeaux, Vol. 13, No. 1 (2001), pp. 27-41.
- Karl Dilcher and Larry Ericksen, Continued fractions and Stern polynomials, Ramanujan Journal 45.3 (2018): 659-681. See Table 2.
- Karl Dilcher and Hayley Tomkins, Square classes and divisibility properties of Stern polynomials, Integers, Vol. 18 (2018), Article #A29.
- Petro Kosobutskyy, The Collatz problem as a reverse n->0 problem on a graph tree formed from theta*2^n Jacobsthal-type numbers, arXiv:2306.14635 [math.GM], 2023.
- Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Sam Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, Vol. 117, No. 7 (2010), pp. 581-598.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
-
[(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
-
{a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
-
{a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
-
[(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019
A118416
Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.
Original entry on oeis.org
1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1
Triangle begins:
1;
2, 6;
4, 12, 20;
8, 24, 40, 56;
16, 48, 80, 112, 144;
32, 96, 160, 224, 288, 352;
64, 192, 320, 448, 576, 704, 832;
-
a118416 n k = a118416_tabl !! (n-1) !! (k-1)
a118416_row 1 = [1]
a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
a118416_tabl = map a118416_row [1..]
-- Reinhard Zumkeller, Jan 22 2012
-
A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
-
Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
-
from math import isqrt
def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025
A252574
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.
Original entry on oeis.org
702, 843, 742, 1069, 868, 890, 1694, 1795, 1558, 1469, 2985, 3441, 4168, 3286, 2637, 5401, 8980, 9051, 10885, 7610, 4583, 9936, 23007, 30532, 25882, 34532, 17261, 8279, 18972, 47737, 92725, 107651, 88844, 96099, 39419, 15476, 36144, 133142, 208375
Offset: 1
Some solutions for n=4 k=4
..3..2..2..3..2..1....0..2..0..0..2..0....0..0..2..0..0..2....0..0..2..0..0..2
..0..2..0..0..2..0....1..1..3..1..1..0....3..2..1..3..1..2....3..2..2..3..2..1
..0..0..2..0..0..2....2..0..0..2..0..0....0..2..0..0..2..0....0..2..0..0..2..0
..3..1..1..3..2..1....0..2..0..0..2..0....0..0..2..0..0..2....0..0..2..0..0..2
..0..2..0..0..2..0....2..1..3..2..2..3....3..1..2..3..1..2....3..1..2..3..2..1
..0..0..2..0..0..2....2..0..0..1..0..0....0..2..0..0..2..0....0..2..0..0..1..0
A093565
(8,1) Pascal triangle.
Original entry on oeis.org
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
Offset: 0
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
A250783
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
Original entry on oeis.org
9, 21, 18, 46, 46, 36, 99, 106, 96, 72, 209, 238, 230, 196, 144, 436, 518, 534, 482, 396, 288, 901, 1106, 1194, 1152, 990, 796, 576, 1849, 2326, 2604, 2640, 2426, 2010, 1596, 1152, 3774, 4838, 5568, 5882, 5688, 5028, 4054, 3196, 2304, 7671, 9978, 11732, 12796
Offset: 1
Some solutions for n=4 k=4
..0..0..1..0..0....0..0..0..1..0....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..1....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
Showing 1-10 of 37 results.
Next
Comments