cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005023 Number of walks of length 2n+7 in the path graph P_8 from one end to the other.

Original entry on oeis.org

7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
Offset: 1

Views

Author

Keywords

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A094829 (first differences), A094256 (essentially the same).

Programs

  • Magma
    I:=[7, 34, 143, 560]; [n le 4 select I[n] else 7*Self(n-1)-15*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
  • Maple
    a:=k->sum(binomial(7+2*k,9*j+k-2),j=ceil((2-k)/9)..floor((9+k)/9))-sum(binomial(7+2*k,9*j+k-1),j=ceil((1-k)/9)..floor((8+k)/9)): seq(a(k),k=1..28);
    A005023:=-(-7+15*z-10*z**2+z**3)/(z-1)/(z**3-9*z**2+6*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(-z^3 + 10 z^2 - 15 z + 7)/(z^4 - 10 z^3 + 15 z^2 - 7 z + 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    LinearRecurrence[{7,-15,10,-1},{7,34,143,560},40] (* Harvey P. Dale, May 26 2013 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 7 x + 15 x^2 - 10 x^3 + x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)

Formula

G.f.: 1/(1-7x+15x^2-10x^3+x^4) - 1. a(n)=7a(n-1)-15a(n-2)+10a(n-3)-a(n-4). - Emeric Deutsch, Apr 02 2004
a(k) = sum(binomial(7+2k, 9j+k-2)-binomial(7+2k, 9j+k-1), j=-infinity..infinity) (a finite sum).

Extensions

Better definition from Emeric Deutsch, Apr 02 2004