A005056 a(n) = 3^n + 2^n - 1.
1, 4, 12, 34, 96, 274, 792, 2314, 6816, 20194, 60072, 179194, 535536, 1602514, 4799352, 14381674, 43112256, 129271234, 387682632, 1162785754, 3487832976, 10462450354, 31385253912, 94151567434, 282446313696, 847322163874, 2541932937192, 7625731702714
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A083313.
Programs
-
Mathematica
Table[3^n + 2^n - 1, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *) CoefficientList[Series[(1 - 2 x - x^2) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 08 2013 *) LinearRecurrence[{6,-11,6},{1,4,12},30] (* Harvey P. Dale, Aug 18 2023 *)
-
PARI
a(n) = 3^n + 2^n - 1 \\ Rick L. Shepherd, Aug 07 2017
Formula
From Paul Barry, Apr 25 2003: (Start)
G.f.: (1-2x-x^2)/((1-x)(1-2x)(1-3x)).
E.g.f.: exp(3x) + exp(2x) - exp(x). (End)
a(n) = 5*a(n-1) - 6*a(n-2) - 2 for n > 1, a(0)=1, a(1)=4. - Vincenzo Librandi, Dec 31 2010
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 2, a(0)=1, a(1)=4, a(2)=12. - Rick L. Shepherd, Aug 07 2017
a(n) = A007689(n)-1. - R. J. Mathar, Mar 10 2022
Comments