cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A083318 a(0) = 1; for n>0, a(n) = 2^n + 1.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649
Offset: 0

Views

Author

Paul Barry, Apr 25 2003

Keywords

Comments

Inverse binomial transform of A005056.
Also, A000533 interpreted as binary numbers, written in base 10. Numbers whose representation in base 2 is has n+1 digits and the digit "1" is the initial and final digit and if n>1 then the internal digits are "0" (see example). - Omar E. Pol, Feb 24 2008
a(n) equals the number of ternary sequences of length n such that no two consecutive terms differ by 1. - David Nacin, May 31 2017

Examples

			From _Omar E. Pol_, Feb 24 2008: (Start)
------------------------------
n .... a(n) .. a(n) in base 2
------------------------------
0 ..... 1 ..... 1
1 ..... 3 ..... 11
2 ..... 5 ..... 101
3 ..... 9 ..... 1001
4 .... 17 ..... 10001
5 .... 33 ..... 100001
6 .... 65 ..... 1000001
7 ... 129 ..... 10000001
8 ... 257 ..... 100000001
9 ... 513 ..... 1000000001
(End)
G.f. = 1 + 3*x + 5*x^2 + 9*x^3 + 17*x^4 + 33*x^5 + 65*x^6 + 129*x^7 + ... - _Michael Somos_, Jun 04 2016
		

Crossrefs

Except for the leading term, the same as A000051.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 2^n +1)); # G. C. Greubel, Nov 20 2019
  • Magma
    [2^n+1-0^n : n in [0..40]]; // Vincenzo Librandi, Sep 01 2011
    
  • Maple
    seq(`if`(n=0, 1, 2^n + 1), n=0..40); # G. C. Greubel, Nov 20 2019
  • Mathematica
    Join[{1},2^Range[40]+1] (* Harvey P. Dale, May 17 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^n + 1)}; /* Michael Somos, Jun 04 2016 */
    
  • Sage
    [1]+[2^n +1 for n in (1..40)] # G. C. Greubel, Nov 20 2019
    

Formula

a(n) = 2^n + 1^n - 0^n.
G.f.: (1-2*x^2)/((1-x)*(1-2x)).
E.g.f.: exp(2*x) + exp(x) - exp(0).
a(n) = Sum_{k=0..n} 0^(k*(n-k))*2^(n-k). - Paul Barry, Feb 09 2005
a(n) = Min{m: A008687(m) = n+1}. - Reinhard Zumkeller, Jul 25 2006
Row sums of triangle A132749; = binomial transform of [1, 2, 0, 2, 0, 2, 0, 2, ...]. - Gary W. Adamson, Aug 28 2007
A020650(a(n)) = 1. - Yosu Yurramendi, Jun 01 2016

Extensions

Edited by N. J. A. Sloane, Sep 28 2007

A155588 a(n) = 5^n + 2^n - 1^n.

Original entry on oeis.org

1, 6, 28, 132, 640, 3156, 15688, 78252, 390880, 1953636, 9766648, 48830172, 244144720, 1220711316, 6103532008, 30517610892, 152587956160, 762939584196, 3814697527768, 19073486852412, 95367432689200, 476837160300276
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x)+1/(1-2*x)-1/(1-x).
E.g.f.: e^(5*x)+e^(2*x)-e^x.
a(n) = 7*a(n-1)-10*a(n-2)-4 with a(0)=1, a(1)=6. - Vincenzo Librandi, Jul 21 2010
a(n) = A074600(n)-1. - R. J. Mathar, Mar 10 2022

A155590 a(n) = 7^n + 2^n - 1.

Original entry on oeis.org

1, 8, 52, 350, 2416, 16838, 117712, 823670, 5765056, 40354118, 282476272, 1977328790, 13841291296, 96889018598, 678223089232, 4747561542710, 33232930635136, 232630514118278, 1628413598172592, 11398895185897430, 79792266298660576, 558545864085381158, 3909821048587182352
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-7*x)+1/(1-2*x)-1/(1-x).
E.g.f.: exp(7*x)+exp(2*x)-exp(x).
a(n) = 9*a(n-1)-14*a(n-2)-6 with a(0) = 1, a(1) = 8. - Vincenzo Librandi, Jul 21 2010
a(n) = A074602(n)-1. - R. J. Mathar, Mar 10 2022

A155592 8^n+2^n-1^n.

Original entry on oeis.org

1, 9, 67, 519, 4111, 32799, 262207, 2097279, 16777471, 134218239, 1073742847, 8589936639, 68719480831, 549755822079, 4398046527487, 35184372121599, 281474976776191, 2251799813816319, 18014398509744127, 144115188076380159
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[8^n+2^n-1^n,{n,0,30}] (* or *) LinearRecurrence[{11,-26,16},{1,9,67},30] (* Harvey P. Dale, Jul 09 2017 *)
  • PARI
    a(n)=8^n+2^n-1 \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: 1/(1-8*x)+1/(1-2*x)-1/(1-x). E.g.f.: e^(8*x)+e^(2*x)-e^x.
a(n)=10*a(n-1)-16*a(n-2)-7 with a(0)=1, a(1)=9 - Vincenzo Librandi, Jul 21 2010
a(n) = A074603(n)-1. - R. J. Mathar, Mar 10 2022

A155593 a(n) = 9^n + 2^n - 1.

Original entry on oeis.org

1, 10, 84, 736, 6576, 59080, 531504, 4783096, 43046976, 387421000, 3486785424, 31381061656, 282429540576, 2541865836520, 22876792471344, 205891132127416, 1853020188917376, 16677181699797640, 150094635297261264
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[9^n+2^n-1,{n,0,30}] (* or *) LinearRecurrence[{12,-29,18},{1,10,84},30] (* Harvey P. Dale, Sep 09 2022 *)
  • PARI
    a(n)=9^n+2^n-1^n \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: 1/(1-9*x)+1/(1-2*x)-1/(1-x).
E.g.f.: e^(9*x)+e^(2*x)-e^x.
a(n) = 11*a(n-1)-18*a(n-2)-8 with a(0)=1, a(1)=10. - Vincenzo Librandi, Jul 21 2010
a(n) = A074604(n)-1. - R. J. Mathar, Mar 10 2022

A155594 10^n+2^n-1.

Original entry on oeis.org

1, 11, 103, 1007, 10015, 100031, 1000063, 10000127, 100000255, 1000000511, 10000001023, 100000002047, 1000000004095, 10000000008191, 100000000016383, 1000000000032767, 10000000000065535, 100000000000131071
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-10*x)+1/(1-2*x)-1/(1-x). E.g.f.: e^(10*x)+e^(2*x)-e^x.
a(n)=12*a(n-1)-20*a(n-2)-9 with a(0)=1, a(1)=11 - Vincenzo Librandi, Jul 21 2010
a(0)=1, a(1)=11, a(2)=103, a(n)=13*a(n-1)-32*a(n-2)+20*a(n-3). - Harvey P. Dale, Mar 07 2015
a(n) = A050621(n+1)-1. - R. J. Mathar, Mar 10 2022

A155589 a(n) = 6^n + 2^n - 1.

Original entry on oeis.org

1, 7, 39, 223, 1311, 7807, 46719, 280063, 1679871, 10078207, 60467199, 362799103, 2176786431, 13060702207, 78364180479, 470185017343, 2821109972991, 16926659575807, 101559956930559, 609359740534783, 3656158441111551, 21936950642475007, 131621703846461439
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-6*x)+1/(1-2*x)-1/(1-x).
E.g.f.: exp(6*x)+exp(2*x)-exp(x).
a(n) = 8*a(n-1)-12*a(n-2)-5 with a(0) = 1, a(1) = 7. - Vincenzo Librandi, Jul 21 2010

A155595 11^n+2^n-1.

Original entry on oeis.org

1, 12, 124, 1338, 14656, 161082, 1771624, 19487298, 214359136, 2357948202, 25937425624, 285311672658, 3138428380816, 34522712152122, 379749833599624, 4177248169448418, 45949729863637696, 505447028499424842
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-11*x)+1/(1-2*x)-1/(1-x). E.g.f.: e^(11*x)+e^(2*x)-e^x.
a(n)=13*a(n-1)-22*a(n-2)-10 with a(0)=1, a(1)=12 - Vincenzo Librandi, Jul 21 2010

A265417 Rectangular array T(n,m), read by upward antidiagonals: T(n,m) is the number of difunctional (regular) binary relations between an n-element set and an m-element set.

Original entry on oeis.org

2, 4, 4, 8, 12, 8, 16, 34, 34, 16, 32, 96, 128, 96, 32, 64, 274, 466, 466, 274, 64, 128, 792, 1688, 2100, 1688, 792, 128, 256, 2314, 6154, 9226, 9226, 6154, 2314, 256, 512, 6816, 22688, 40356, 48032, 40356, 22688, 6816, 512, 1024, 20194, 84706, 177466, 245554, 245554, 177466, 84706, 20194, 1024, 2048, 60072, 320168
Offset: 1

Views

Author

Jasha Gurevich, Dec 08 2015

Keywords

Comments

T(n,m) is the number of difunctional (regular) binary relations between an n-element set and an m-element set.
From Petros Hadjicostas, Feb 09 2021: (Start)
From Knopfmacher and Mays (2001): "Let G be a labeled graph, with edge set E(G) and vertex set V(G). A composition of G is a partition of V(G) into vertex sets of connected induced subgraphs of G." "We will denote by C(G) the number of distinct compositions that exist for a given graph G."
By Theorem 10 in Knofmacher and Mays (2001), T(n,m) = C(K_{n,m}) = Sum_{i=1..n+1} A341287(n,i)*i^m, where K_{n,m} is the complete bipartite graph with n+m vertices and n*m edges. For values of T(n,m), see the table on p. 10 of the paper.
Huq (2007) reproved the result using different methodology and derived the bivariate e.g.f. of T(n,m). (End)

Examples

			Array T(n,m) (with rows n >= 1 and columns m >= 1) begins:
    2      4      8      16       32        64        128         256 ...
    4     12     34      96      274       792       2314        6816 ...
    8     34    128     466     1688      6154      22688       84706 ...
   16     96    466    2100     9226     40356     177466      788100 ...
   32    274   1688    9226    48032    245554    1251128     6402586 ...
   64    792   6154   40356   245554   1444212    8380114    48510036 ...
  128   2314  22688  177466  1251128   8380114   54763088   354298186 ...
  256   6816  84706  788100  6402586  48510036  354298186  2540607060 ...
  512  20194 320168 3541066 33044432 281910994 2288754728 18082589146 ...
  ...
		

Crossrefs

Cf. A005056 (1st line or column ?), A014235 (diagonal ?), A341287.

Programs

  • Maple
    sum((Stirling2(m, i-1)*factorial(i)+Stirling2(m, i)*factorial(i+1)+Stirling2(m, i+1)*factorial(i+1))*Stirling2(n, i), i = 1 .. n)
  • PARI
    T(n, m) = sum(i=1,n, (stirling(m, i-1,2)*i! + stirling(m, i,2)*(i+1)! + stirling(m, i+1,2)*(i+1)!)*stirling(n, i,2)); \\ Michel Marcus, Dec 10 2015

Formula

T(n, m) = Sum_{i=1..n} (Stirling2(m, i-1)*i! + Stirling2(m, i)*(i+1)! + Stirling2(m, i+1)*(i+1)!)*Stirling2(n, i).
From Petros Hadjicostas, Feb 09 2021: (Start)
T(n,m) = Sum_{i=1..n+1} A341287(n,i)*i^m = Sum_{i=1..m+1} A341287(m,i)*i^n. (See Knopfmacher and Mays (2001) and Huq (2007).)
Bivariate e.g.f.: Sum_{n,m >= 1} T(n,m)*(x^n/n!)*(y^m/m!) = exp((exp(x) - 1)*(exp(y) - 1) + x + y) - exp(x) - exp(y) + 1. (This is a modification of Eq. (7) in Huq (2007), p. 4.) (End)

A346990 Numbers occurring as divisors of 2^k + 3^k, k > 0.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 25, 31, 35, 37, 41, 49, 55, 59, 61, 73, 77, 79, 83, 89, 97, 103, 107, 109, 113, 121, 125, 127, 131, 137, 149, 151, 155, 157, 169, 173, 175, 179, 181, 193, 199, 217, 223, 227, 229, 233, 241, 245, 251, 257, 271, 275, 277, 281, 289, 295, 313
Offset: 1

Views

Author

Hugo Pfoertner, Aug 11 2021

Keywords

Comments

If n is a term, then so are all divisors of n. - Robert Israel, Dec 08 2022

Crossrefs

Programs

  • Maple
    filter:= proc(n) local v;
       if igcd(n,6) <> 1 then return false fi;
       q:= 3/2 mod n;
       traperror(NumberTheory:-ModularLog(-1,q,n)) <> lasterror
    end proc:
    filter(1):= true:
    select(filter, [$1..400]); # Robert Israel, Dec 08 2022
Showing 1-10 of 10 results.