cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A155624 11^n-3^n+1.

Original entry on oeis.org

1, 9, 113, 1305, 14561, 160809, 1770833, 19484985, 214352321, 2357928009, 25937365553, 285311493465, 3138427845281, 34522710549609, 379749828800273, 4177248155066745, 45949729820525441, 505447028370153609
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-11*x)-1/(1-3*x)+1/(1-x). E.g.f.: e^(11*x)-e^(3*x)+e^x.
a(n)=14*a(n-1)-33*a(n-2)+20 with a(0)=1, a(1)=9 - Vincenzo Librandi, Jul 21 2010

A155625 a(n) = 11^n + 4^n - 1.

Original entry on oeis.org

1, 14, 136, 1394, 14896, 162074, 1775656, 19503554, 214424416, 2358209834, 25938473176, 285315864914, 3138445153936, 34522779252794, 379750102018696, 4177249243157474, 45949734158539456, 505447045679162954, 5559917382211708216, 61159090723292453234, 672749996032071636976
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-11*x)+1/(1-4*x)-1/(1-x).
E.g.f.: exp(11*x)+exp(4*x)-exp(x).
a(n) = 15*a(n-1)-44*a(n-2)-30 with a(0) = 1, a(1) = 14. - Vincenzo Librandi, Jul 21 2010

A155626 a(n) = 5^n-4^n+1.

Original entry on oeis.org

1, 2, 10, 62, 370, 2102, 11530, 61742, 325090, 1690982, 8717050, 44633822, 227363410, 1153594262, 5835080170, 29443836302, 148292923330, 745759583942, 3745977788890, 18798608421182, 94267920012850, 472439111692022
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x)-1/(1-4*x)+1/(1-x).
E.g.f.: e^(5*x)-e^(4*x)+e^x.
a(n) = 9*a(n-1)-20*a(n-2)+12 with a(0)=1, a(1)=2. - Vincenzo Librandi, Jul 21 2010
a(n) = 10*a(n-1)-29*a(n-2)+20*a(n-3). - Wesley Ivan Hurt, Jun 07 2021

A155623 a(n) = 11^n + 3^n - 1.

Original entry on oeis.org

1, 13, 129, 1357, 14721, 161293, 1772289, 19489357, 214365441, 2357967373, 25937483649, 285311847757, 3138428908161, 34522713738253, 379749838366209, 4177248183764557, 45949729906618881, 505447028628433933
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Comments

a^n+b^n-1^n=(a+b)*a(n-1)-(a*b)*a(n-2)-(a-1)*(b-1) - Vincenzo Librandi, Jul 21 2010

Crossrefs

Programs

Formula

G.f.: 1/(1 - 11*x) + 1/(1 - 3*x) - 1/(1 - x).
E.g.f.: exp(11*x) + exp(3*x) - exp(x).
a(n) = 14*a(n-1) - 33*a(n-2) - 20 for n>1, a(0)=1, a(1)=13 - Vincenzo Librandi, Jul 21 2010

A155622 a(n) = 11^n - 2^n + 1.

Original entry on oeis.org

1, 10, 118, 1324, 14626, 161020, 1771498, 19487044, 214358626, 2357947180, 25937423578, 285311668564, 3138428372626, 34522712135740, 379749833566858, 4177248169382884, 45949729863506626, 505447028499162700
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Comments

In general: r^n - s^n + 1 = (r+s)*a(n-1)-(r*s)*a(n-2)+(r-1)*(s-1). - Vincenzo Librandi, Jul 21 2010

Crossrefs

Programs

  • Mathematica
    Table[11^n - 2^n + 1, {n, 0, 20}] (* or *) LinearRecurrence[{14, -35, 22}, {1, 10, 118}, 20] (* Harvey P. Dale, Oct 21 2013 *)
  • PARI
    a(n)=11^n-2^n+1 \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: 1/(1 - 11*x) - 1/(1 - 2*x) + 1/(1-x).
E.g.f.: exp(11*x) - exp(2*x) + exp(x).
a(n) = 13*a(n-1) - 22*a(n-2) + 10 for n>1, a(0)=1, a(1)=10. - Vincenzo Librandi, Jul 21 2010
Showing 1-5 of 5 results.