A005065 Sum of 4th powers of primes dividing n.
0, 16, 81, 16, 625, 97, 2401, 16, 81, 641, 14641, 97, 28561, 2417, 706, 16, 83521, 97, 130321, 641, 2482, 14657, 279841, 97, 625, 28577, 81, 2417, 707281, 722, 923521, 16, 14722, 83537, 3026, 97, 1874161, 130337, 28642, 641, 2825761, 2498, 3418801, 14657, 706, 279857, 4879681, 97, 2401, 641, 83602, 28577, 7890481, 97
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A005065 := proc(n) add(d^4, d= numtheory[factorset](n)) ; end proc; seq(A005065(n),n=1..40) ; # R. J. Mathar, Nov 08 2011
-
Mathematica
Join[{0},Table[Total[Transpose[FactorInteger[n]][[1]]^4],{n,2,40}]] (* Harvey P. Dale, Jul 16 2014 *) Array[DivisorSum[#, #^4 &, PrimeQ] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^4); \\ Michel Marcus, Jul 11 2017
-
Python
from sympy import primefactors def a(n): return sum(p**4 for p in primefactors(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
-
Scheme
(define (A005065 n) (if (= 1 n) 0 (+ (A000583 (A020639 n)) (A005065 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = p^4.
From Antti Karttunen, Jul 11 2017: (Start)
(End)
G.f.: Sum_{k>=1} prime(k)^4*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2018
a(n) = Sum_{p|n, p prime} p^4. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^4 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Extensions
More terms from Antti Karttunen, Jul 10 2017
Comments