A005101 Abundant numbers (sum of divisors of m exceeds 2m).
12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1
References
- L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Pure Appl. Math., Vol. 44 (1913), pp. 264-296.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 59.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. Britton, Perfect Number Analyser.
- C. K. Caldwell, The Prime Glossary, abundant number.
- Marc Deléglise, Bounds for the density of abundant integers, Experiment. Math., Volume 7, Issue 2 (1998), pp. 137-143.
- Jason Earls, On Smarandache repunit n numbers, in Smarandache Notions Journal, Vol. 14, No. 1 (2004), page 243.
- S. Flora Jeba, Anirban Roy, and Manjil P. Saikia, On k-Facile Perfect Numbers, Algebra and Its Applications (ICAA-2023) Springer Proc. Math. Stat., Vol. 474, 111-121. See p. 112.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Walter Nissen, Abundancy : Some Resources .
- Paul Pollack and Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B, Vol. 3 (2016), pp. 1-26; Errata.
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 10.
- Eric Weisstein's World of Mathematics, Abundant Number.
- Eric Weisstein's World of Mathematics, Abundance.
- Wikipedia, Abundant number.
- Index entries for "core" sequences.
Crossrefs
Programs
-
Haskell
a005101 n = a005101_list !! (n-1) a005101_list = filter (\x -> a001065 x > x) [1..] -- Reinhard Zumkeller, Nov 01 2015, Jan 21 2013
-
Maple
with(numtheory): for n from 1 to 270 do if sigma(n)>2*n then printf(`%d,`,n) fi: od: isA005101 := proc(n) simplify(numtheory[sigma](n) > 2*n) ; end proc: # R. J. Mathar, Jun 18 2015 A005101 := proc(n) option remember ; local a ; if n =1 then 12 ; else a := procname(n-1)+1 ; while numtheory[sigma](a) <= 2*a do a := a+1 ; end do ; a ; end if ; end proc: # R. J. Mathar, Oct 11 2017
-
Mathematica
abQ[n_] := DivisorSigma[1, n] > 2n; A005101 = Select[ Range[270], abQ[ # ] &] (* Robert G. Wilson v, Sep 15 2005 *) Select[Range[300], DivisorSigma[1, #] > 2 # &] (* Vincenzo Librandi, Oct 12 2015 *)
-
PARI
isA005101(n) = (sigma(n) > 2*n) \\ Michael B. Porter, Nov 07 2009
-
Python
from sympy import divisors def ok(n): return sum(divisors(n)) > 2*n print(list(filter(ok, range(1, 271)))) # Michael S. Branicky, Aug 29 2021
-
Python
from sympy import divisor_sigma from itertools import count, islice def A005101_gen(startvalue=1): return filter(lambda n:divisor_sigma(n) > 2*n, count(max(startvalue, 1))) # generator of terms >= startvalue A005101_list = list(islice(A005101_gen(), 20)) # Chai Wah Wu, Jan 14 2022
Formula
a(n) is asymptotic to C*n with C=4.038... (Deléglise, 1998). - Benoit Cloitre, Sep 04 2002
A001065(a(n)) > a(n). - Reinhard Zumkeller, Nov 01 2015
Comments