cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).

Original entry on oeis.org

1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0

Views

Author

Keywords

Comments

Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
  • C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
    
  • Maple
    A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end;
    # Bill Gosper's approximation (for n>0):
    a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
  • Mathematica
    f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
    a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
    
  • Python
    from math import prod, factorial
    def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022

Formula

a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021