cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005173 Number of rooted trees with 3 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

0, 1, 12, 61, 240, 841, 2772, 8821, 27480, 84481, 257532, 780781, 2358720, 7108921, 21392292, 64307941, 193185960, 580082161, 1741295052, 5225982301, 15682141200, 47054812201, 141181213812, 423577195861, 1270798696440, 3812530307041, 11437859356572, 34314114940621
Offset: 1

Views

Author

Keywords

Examples

			From _Andrew Howroyd_, Mar 28 2025: (Start)
The a(3) = 12 trees up to relabeling have one of the following 3 forms:
     {}         {1}        {1}
    /  \       /   \        |
  {1} {2,3}   {2}  {3}     {2}
                            |
                           {3}
(End)
		

References

  • F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A094262.
Cf. A003063.

Programs

  • Maple
    A005173:=-z*(1+6*z)/(z-1)/(3*z-1)/(2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[x (1+6 x)/(1-x)/(1-2 x)/(1-3 x),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2023 *)

Formula

G.f.: x*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). [corrected by Ray Chandler, Jun 26 2023]
First differences give A003063, 3^(n-1) - 2^n.
From Andrew Howroyd, Mar 28 2025: (Start)
a(n) = (3^(n+1) - 2^(n+3) + 7)/2.
E.g.f.: (3*exp(x)/2 - 1)*(exp(x) - 1)^2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 06 2001
Name clarified by Andrew Howroyd, Mar 28 2025