A367012
a(n) = Sum_{k=0..n} k! * (n-k)^k.
Original entry on oeis.org
1, 1, 2, 5, 18, 95, 704, 6945, 87254, 1349603, 25064700, 548782229, 13970248610, 408882114519, 13625250384488, 512421111644105, 21577659567580014, 1010231138742981515, 52263989531636074964, 2971798406660674944573, 184850941269122564302010
Offset: 0
-
Table[Sum[k! * (n-k)^k, {k, 0, n}], {n, 1, 20}]
-
a(n) = sum(k=0, n, k!*(n-k)^k); \\ Seiichi Manyama, Dec 31 2023
A342225
Total number of ordered graceful labelings of graphs with n edges.
Original entry on oeis.org
1, 2, 4, 12, 40, 182, 906, 5404, 35494, 264178, 2124078, 18965372, 181080940, 1879988162, 20764521072, 246377199752, 3085635516364, 41182472709986, 577129788232678, 8552244962978250, 132591961730782524, 2161198867136837458
Offset: 1
For n=4 the a(4)=12 solutions l_0l_1l_2l_3 are 0000, 0001, 0011, 0012, 0020, 0022, 0101, 0103, 0111, 0112, 0122, 0123. (Of these, 0022 and 0103 are not counted by A005193.)
- D. E. Knuth, The Art of Computer Programming, Volume 4B, Section 7.2.2.3 will have an exercise based on this sequence.
A342357
Number of fundamentally different rainbow graceful labelings of graphs with n edges.
Original entry on oeis.org
1, 2, 11, 125, 1469, 30970, 1424807, 25646168, 943532049, 66190291008, 1883023236995, 119209289551407, 8338590851427689, 366451025462807402, 25231464507361789935, 2996947275258886238380, 211289282287835811874277, 12680220578500976681544666, 1815313698001596651227722787
Offset: 1
Each equivalence class has exactly one graph with v_1=0.
For n=3 the eleven classes of graphs 0v_2v_3 are: {000,011,015,050,054,065}, {001,002,024,041,063,064}, {003,026,031,034,046,062}, {004,061}, {005,013,021,044,052,060}, {006,014,030,035,051,066}, {010,055}, {012,020,022,043,045,053}, {016,025,032,033,040,056}, {023,042}, {036}.
- D. E. Knuth, The Art of Computer Programming, forthcoming exercise in Section 7.2.2.3.
- A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Dunod Paris (1967) 349-355.
-
sols[alf_,bet_,q_]:=Block[{d=GCD[alf,q]},If[Mod[bet,d]!=0,0,d]]
(* that many solutions to alf x == bet (modulo q) for 0<=xl && q-ll>l, s++;ll=Mod[ll*a,q];r=Mod[r*a+1,q]];
If[ll==l,sols[a^s-1,-r b,q], If[q-ll==l,sols[a^s-1,l-r b,q],1]]]
f[a_,b_,q_]:=Product[f[l,a,b,q],{l,(q-1)/2}]
x[q_]:=Sum[If[GCD[a,q]>1,0,Sum[f[a,b,q],{b,0,q-1}]],{a,q-1}]/(q EulerPhi[q])
a[n_]:=x[2n+1]
-
# This is a port of the Mathematica program.
def sols(a, b, q):
g = gcd(a, q)
return 0 if mod(b, g) != 0 else g
def F(k, a, b, q):
s, r, m = 1, 1, mod(k*a, q)
while m > k and q - m > k:
s += 1
m = mod(m*a, q)
r = mod(r*a + 1, q)
if m == k: return sols(a^s - 1, -r*b, q)
if m == q-k: return sols(a^s - 1, k - r*b, q)
return 1
def f(a, b, q):
return prod(F(k, a, b, q) for k in (1..(q-1)//2))
def a(n):
q = 2*n + 1
s = sum(0 if gcd(a, q) > 1 else sum(f(a, b, q)
for b in (0..q-1)) for a in (1..q-1))
return s // (q*euler_phi(q))
print([a(n) for n in (1..19)]) # Peter Luschny, Mar 10 2021
A245517
Irregular triangle read by rows: T(n,L) = number of alpha-labeled graphs with n edges and boundary value L that do not use one number from (1,2,...,n-1) as a label (n >= 4, 1 <= L <= n - 2).
Original entry on oeis.org
1, 1, 4, 4, 4, 12, 20, 20, 12, 32, 88, 96, 88, 32, 80, 352, 504, 504, 352, 80, 192, 1328, 2592, 2880, 2592, 1328, 192, 448, 4816, 12852, 17280, 17280, 12852, 4816, 448
Offset: 4
For n=9 and L=5, T(9,5) = 2592.
For n=10 and L=4, T(10,4) = 17280.
Triangle begins:
[n\L] [1] [2] [3] [4] [5] [6] [7] [8]
[4] 1, 1;
[5] 4, 4, 4;
[6] 12, 20, 20, 12;
[7] 32, 88, 96, 88, 32;
[8] 80, 352, 504, 504, 352, 80;
[9] 192, 1328, 2592, 2880, 2592, 1328, 192;
[10] 448, 4816, 12852, 17280, 17280, 12852, 4816, 448;
...
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A245518
Irregular triangle read by rows: T(n,i) = number of alpha-labeled graphs with n edges that do not use the label i, for 1 <= i <= n-1 and n >= 4.
Original entry on oeis.org
1, 0, 1, 4, 2, 2, 4, 16, 12, 8, 12, 16, 64, 64, 40, 40, 64, 64, 284, 328, 236, 176, 236, 328, 284, 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360, 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184
Offset: 4
For n=4 and i=2, a(4,2) = 0.
For n=8 and i=5, a(8,5) = 64.
Triangle begins:
[n\i] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[4] 1, 0, 1;
[5] 4, 2, 2, 4;
[6] 16, 12, 8, 12, 16;
[7] 64, 64, 40, 40, 64, 64;
[8] 284, 328, 236, 176, 236, 328, 284;
[9] 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360;
[10] 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184;
. . .
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A245519
Number of alpha-labeled graphs with n edges and at most n vertices.
Original entry on oeis.org
0, 0, 0, 2, 10, 64, 336, 1872, 11104, 71944, 508032, 3511232, 27192704, 223750464, 1947253504, 17899536448, 173156535168, 1760383827776, 18752453106176, 209034916385472, 2432351796434560, 29509268795249700
Offset: 1
For n=4, a(4)=2, there are 2 alpha-labeled graphs with 4 edges and at most 4 vertices.
For n=10, a(10)=71944, there are 71944 alpha-labeled graphs with 10 edges and at most 10 vertices.
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A259882
Number of graphs with n edges having a proper labeling that is bilaterally symmetric and satisfies condition (4.1) of Sheppard (1976).
Original entry on oeis.org
0, 2, 2, 6, 4, 22, 14, 102, 62
Offset: 1
Showing 1-7 of 7 results.
Comments