cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118164 Number of representations of A005243(n) as sum of consecutive earlier terms in A005243.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 2, 3, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 1, 3, 4, 2, 1, 3, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 3, 1, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 13 2006

Keywords

Comments

A118165(n) = Min{m: a(m) = n};
for n>2: a(n) > 0 by definition of A005243.

Examples

			A005243(33) = 54 = 29+25 = Sum(A005243[17:18]) =
19+18+17 = Sum(A005243[11:13]) = 14+11+10+8+6+5 =
Sum(A005243[4:9]), therefore a(33) = 3.
		

A048973 Complement of A005243.

Original entry on oeis.org

4, 7, 9, 12, 13, 15, 20, 23, 26, 27, 28, 31, 36, 38, 39, 42, 44, 48, 50, 52, 53, 55, 56, 61, 63, 64, 66, 74, 79, 83, 85, 89, 98, 101, 103, 107, 109, 114, 120, 123, 125, 128, 131, 133, 136, 144, 152, 157, 159, 160, 165, 168, 182, 184, 190, 192, 198, 203, 208, 212
Offset: 1

Views

Author

D. R. Hofstadter

Keywords

Comments

The sequence appears to be growing slightly faster than quadratically. - T. D. Noe, Nov 04 2007

Programs

  • Haskell
    import Data.List.Ordered (minus)
    a048973 n = a048973_list !! (n-1)
    a048973_list = [1..] `minus` a005243_list
    -- Reinhard Zumkeller, Dec 17 2015
  • Mathematica
    nmax = 250; For[ s = {1, 2}; n = 3, n <= nmax, n++, ls = Length[s]; tt = Total /@ Flatten[Table[s[[i ;; j]], {i, 1, ls - 1}, {j, i + 1, ls}], 1]; If[MemberQ[tt, n], AppendTo[s, n]]]; A048973 = Complement[Range[nmax], s] (* Jean-François Alcover, Oct 21 2016 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 02 2000

A118166 Smallest term in the Hofstadter sequence A005243 having exactly n representations as sum of consecutive earlier terms.

Original entry on oeis.org

1, 3, 11, 43, 35, 162, 311, 1203, 2405, 2769, 4257, 5772, 9639, 18711, 13860, 40635, 39270, 61425, 45045, 75075, 107415, 53865, 159075, 239085, 197505, 225225, 137445, 621621, 373065, 634095, 812175, 412335, 1036035, 1119195, 883575, 1673595
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 13 2006

Keywords

Comments

a(n) = A005243(A118165(n)).

Examples

			a(8) = A005243(A118165(8)) = A005243(2210) = 2405:
#1: 1203 + 1202 = Sum(A005243[1049:1050]) = 2405,
#2: 803 + 802 + 800 = Sum(A005243[671:673]) = 2405,
#3: 483 + 482 + 481 + 480 + 479 = Sum(A005243[382:386]),
#4: 306 + 304 + 302 + 301 + 300 + 299 + 297 + 296 =
Sum(A005243[224:231]) = 2405,
#5: 224 + 223 + 222 + 221 + 220 + 219 + 218 + 216 + 215 +
214 + 213 = Sum(A005243[153:163]) = 2405,
#6: 145 + 143 + 142 + 141 + 140 + 139 + 138 + 137 + 135 +
134 + 132 + 130 + 129 + 127 + 126 + 124 + 122 + 121 =
Sum(A005243[82:99]) = 2405,
#7: 129 + 127 + 126 + 124 + 122 + 121 + 119 + 118 + 117 +
116 + 115 + 113 + 112 + 111 + 110 + 108 + 106 + 105 +
104 + 102 + 100 = Sum(A005243[67:87]) = 2405,
#8: 95 + 94 + 93 + 92 + 91 + 90 + 88 + 87 + 86 + 84 + 82 +
81 + 80 + 78 + 77 + 76 + 75 + 73 + 72 + 71 + 70 + 69 + 68 +
67 + 65 + 62 + 60 + 59 + 58 + 57 + 54 + 51 =
Sum(A005243[32:63]) = 2405.
		

Crossrefs

Cf. A118164.

Extensions

a(15)-a(35) from Donovan Johnson, Feb 16 2011

A085921 Duplicate of A005243.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 24, 25, 29, 30, 32, 33, 34, 35, 37
Offset: 1

Views

Author

Keywords

A118065 a(1) = a(2) = 1, a(n) = smallest number greater than a(n-1) that can be written as sum of consecutive earlier terms.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2006

Keywords

Comments

Complement of A118066.

Examples

			a(20) = a(11) + a(10) = 11 + 10 = 21;
a(21) = a(9) + a(8) + a(7) = 9 + 7 + 6 = 22;
a(22) = a(12) + a(11) = 12 + 11 = 23;
a(23) = a(13) + a(12) = 13 + 12 = 25;
a(24) = a(10) + a(9) + a(8) = 10 + 9 + 7 = 26.
		

Crossrefs

A118165 Smallest number m such that A118164(m) = n.

Original entry on oeis.org

1, 3, 8, 27, 23, 112, 236, 1050, 2210, 2561, 4016, 5504, 9325, 18328, 13506, 40150, 38789, 60881, 44541, 74499, 106766, 53339, 158352, 238255, 196734, 224410, 136750, 620509, 372124, 632976, 810969, 411364, 1034731, 1117857, 882335, 1672055
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 13 2006

Keywords

Comments

A118164(a(n)) = n; A118166(n) = A005243(a(n)).

Extensions

a(15)-a(35) from Donovan Johnson, Feb 16 2011

A124145 a(1)=1, a(2)=2, a(n)=smallest number greater than a(n-1) that can be written as sum of consecutive earlier terms in exactly one way.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 16, 17, 18, 19, 22, 25, 26, 29, 32, 33, 37, 40, 41, 43, 45, 47, 48, 50, 54, 55, 57, 59, 62, 66, 67, 68, 69, 73, 75, 76, 77, 81, 83, 85, 86, 87, 95, 98, 99, 101, 105, 109, 117, 118, 120, 126, 128, 129, 131, 133, 134, 137, 139, 140, 141, 143, 146, 148
Offset: 1

Views

Author

Tobias Baumann (baumtobi(AT)students.uni-mainz.de), Dec 01 2006

Keywords

Comments

This sequence is similar to the Hofstadter sequence A005243 except the decomposition into summands has to be unique.
This sequence has similarities with Ulam numbers (A002858); here we consider unique sums of consecutive terms, there unique sums of two distinct terms. - Rémy Sigrist, Jan 02 2022

Examples

			a(7)=10 because 2+3+5=10 is the only way to sum up consecutive terms. 11 is not contained in the sequence because 11=5+6=1+2+3+5 has got more than one decompositions.
		

Crossrefs

Programs

  • PARI
    See Links section.

A080338 Product of consecutive previous terms (starting with 2,3).

Original entry on oeis.org

2, 3, 6, 18, 36, 108, 324, 648, 3888, 11664, 23328, 34992, 69984, 209952, 419904, 1259712, 2519424, 22674816, 45349632, 136048896, 272097792, 408146688, 816293376, 2448880128, 14693280768, 29386561536, 88159684608, 264479053824
Offset: 1

Views

Author

Benoit Cloitre, Mar 19 2003

Keywords

Examples

			Sequence begins : 2,3,6,18 and 2*3*6=36 is the smallest product of consecutive terms greater than 18, hence a(7)=36.
		

Crossrefs

Cf. A005243 (sum of consecutive previous terms).

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jul 22 2005
Showing 1-8 of 8 results.