A005267 a(n) = -1 + a(0)*a(1)*...*a(n-1) with a(0) = 3.
3, 2, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 106735757048926752040856495274871386126283608869, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068029
Offset: 0
References
- R. K. Guy and R. Nowakowski, "Discovering primes with Euclid," Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
- T. Koshy, "Intriguing Properties Of Three Related Number Sequences", in Journal of Recreational Mathematics, Vol. 32(3) pp. 210-213, 2003-2004 Baywood NY.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..12
- R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Programs
-
PARI
a(n)=if(n<2,3*(n>=0)-(n>0),a(n-1)^2+a(n-1)-1)
-
Python
def a(n): if n == 0: return 2 t = a(n-1) l = t+1 u = t return l * u - 1 print([a(n) for n in range(0, 8)]) # DarĂo Clavijo, Aug 24 2024
Formula
a(n) = -1 + a(0)a(1)...a(n-1).
a(n) = -1 + Product_{iHenry Bottomley, Jul 31 2000
a(n+1) = a(n)^2 + a(n) - 1 if n>1. a(0)=3, a(1)=2.
An induction shows that a(n+1) = A117805(n) - 1. - R. J. Mathar, Apr 22 2007; M. F. Hasler, May 04 2007
For n>0, a(n) = a(0)^2 + a(1)^2 + ... + a(n-1)^2 - n - 6. - Max Alekseyev, Jun 19 2008
Comments