A005277 Nontotients: even numbers k such that phi(m) = k has no solution.
14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302, 304, 308, 314, 318
Offset: 1
Keywords
Examples
There are no values of m such that phi(m)=14, so 14 is a term of the sequence.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 44 at p. 91.
- R. K. Guy, Unsolved Problems in Number Theory, B36.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 91.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..29750 (terms 1..10000 from T. D. Noe).
- Lambert A'Campo, Every 7-Dimensional Abelian Variety over the p-adic Numbers has a Reducible L-adic Galois Representation, arXiv:2006.06737 [math.NT], 2020.
- Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, arXiv:1801.04542 [hep-th], 2018.
- K. Ford, S. Konyagin, and C. Pomerance, Residue classes free of values of Euler's function, arXiv:2005.01078 [math.NT] (1999).
- L. Havelock, A Few Observations on Totient and Cototient Valence.
- Eric Weisstein's World of Mathematics, Nontotient.
- Wikipedia, Nontotient.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jul. 1992.
Crossrefs
Programs
-
Haskell
a005277 n = a005277_list !! (n-1) a005277_list = filter even a007617_list -- Reinhard Zumkeller, Nov 22 2015
-
Magma
[n: n in [2..400 by 2] | #EulerPhiInverse(n) eq 0]; // Marius A. Burtea, Sep 08 2019
-
Maple
A005277 := n -> if type(n,even) and invphi(n)=[] then n fi: seq(A005277(i),i=1..318); # Peter Luschny, Jun 26 2011
-
Mathematica
searchMax = 320; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; Select[Range[searchMax], EvenQ[ # ] && (phiAnsYldList[[ # ]] == 0) &] (* Alonso del Arte, Sep 07 2004 *) totientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) Select[2 Range@160, ! totientQ@# &] (* Robert G. Wilson v, Mar 20 2023 *)
-
PARI
is(n)=n%2==0 && !istotient(n) \\ Charles R Greathouse IV, Mar 04 2017
Formula
a(n) = 2*A079695(n). - R. J. Mathar, Sep 29 2021
{k: k even and A014197(k) = 0}. - R. J. Mathar, Sep 29 2021
Extensions
More terms from Jud McCranie, Oct 13 2000
Comments