cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005287 Number of permutations of [n] with four inversions.

Original entry on oeis.org

5, 20, 49, 98, 174, 285, 440, 649, 923, 1274, 1715, 2260, 2924, 3723, 4674, 5795, 7105, 8624, 10373, 12374, 14650, 17225, 20124, 23373, 26999, 31030, 35495, 40424, 45848, 51799, 58310, 65415, 73149, 81548, 90649, 100490, 111110, 122549, 134848, 148049
Offset: 4

Views

Author

Keywords

Examples

			[2, 4, 3, 1], [3, 2, 4, 1], [3, 4, 1, 2], [4, 1, 3, 2], [4, 2, 1, 3] have 4 inversions.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,4).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n^2+n-14)/24: n in [4..50]]; // Vincenzo Librandi, Jul 17 2011
  • Maple
    [seq(binomial(n,4)+binomial(n,3)-binomial(n,2), n=5..43)]; # Zerinvary Lajos, Jul 23 2006
  • Mathematica
    CoefficientList[Series[(z^4 - 3*z^3 + z^2 + 5*z - 5)/(z - 1)^5, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
    LinearRecurrence[{5,-10,10,-5,1},{5,20,49,98,174},40] (* Harvey P. Dale, Aug 25 2016 *)
  • PARI
    a(n)=if(n<4,0,n*(n+1)*(n^2+n-14)/24)
    

Formula

a(n) = n*(n+1)*(n^2+n-14)/24.
G.f.: x^4*(-5 + 5*x + x^2 - 3*x^3 + x^4) / (x-1)^5. - Simon Plouffe in his 1992 dissertation
a(n) = binomial(n+1,4) + binomial(n+1,3) - binomial(n+1,2). - Zerinvary Lajos, Jul 23 2006