cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005362 Hoggatt sequence with parameter d=4.

Original entry on oeis.org

1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(4) (of dimension 4) and let E be the exterior algebra of V (of dimension 16). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 18 2021
This is the number of 4-vicious walkers (aka vicious 4-watermelons) - see Essam and Guttmann (1995). This is the 4-walker analog of A001181. - N. J. A. Sloane, Mar 22 2021

References

  • D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A056940:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..3]]) >;
    A005362:= func< n | (&+[A056940(n,k): k in [0..n]]) >;
    [A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
    
  • Maple
    a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
  • Mathematica
    A005362[n_]:=HypergeometricPFQ[{-3-n,-2-n,-1-n,-n},{2,3,4},1] (* Richard L. Ollerton, Sep 12 2006 *)
  • SageMath
    def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n],[2,3,4], 1))
    [A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022

Formula

From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric4F3([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1).
(n+3)*(n+4)*(n+5)*(n+6)*a(n) = 6*(n+1)*(n+3)*(n+4)*(2*n+5)*a(n-1) + 4*(n-1)*n*(4*n+7)*(4*n+9)*a(n-2); a(0)=1, a(1)=2. (End)
a(n) = S(4,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 3 * 2^(4*n + 29/2) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Apr 01 2021