A005362 Hoggatt sequence with parameter d=4.
1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
Offset: 0
Keywords
References
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..845
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Nick Hobson, Python program for this sequence
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
Programs
-
Magma
A056940:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..3]]) >; A005362:= func< n | (&+[A056940(n,k): k in [0..n]]) >; [A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
-
Maple
a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1): seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
-
Mathematica
A005362[n_]:=HypergeometricPFQ[{-3-n,-2-n,-1-n,-n},{2,3,4},1] (* Richard L. Ollerton, Sep 12 2006 *)
-
SageMath
def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n],[2,3,4], 1)) [A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022
Formula
From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric4F3([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1).
(n+3)*(n+4)*(n+5)*(n+6)*a(n) = 6*(n+1)*(n+3)*(n+4)*(2*n+5)*a(n-1) + 4*(n-1)*n*(4*n+7)*(4*n+9)*a(n-2); a(0)=1, a(1)=2. (End)
a(n) = S(4,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 3 * 2^(4*n + 29/2) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Apr 01 2021
Comments