cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005363 Hoggatt sequence with parameter d=5.

Original entry on oeis.org

1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, 566087847780250, 10006446665899330, 181938461947322284, 3393890553702212368, 64807885247524512668, 1264344439859632559216
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(5) (of dimension 5) and let E be the exterior algebra of V (of dimension 32). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 18 2021
This is the number of 5-vicious walkers (aka vicious 5-watermelons) - see Essam and Guttmann (1995). This is the 5-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021

References

  • D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
    A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >;
    [A005363(n): n in [0..40]]; // G. C. Greubel, Nov 14 2022
    
  • Maple
    a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
    # The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - N. J. A. Sloane, Mar 27 2021
    v5 := proc(n) local t1,t2,t3,t4,t5;
    if n=0 then 1
    elif n=1 then 2
    elif n=2 then 8
    else
    t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2);
    t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6);
    t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6);
    t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2);
    t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3);
    t5/t1;
    fi; end;
    [seq(v5(n), n=0..20)];
  • Mathematica
    A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* Richard L. Ollerton, Sep 12 2006 *)
  • SageMath
    def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1))
    [A005363(n) for n in range(51)] # G. C. Greubel, Nov 14 2022

Formula

From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric5F4([-4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5], -1).
(n+4)*(n+5)^2*(n+6)*(n+7)*(n+8)*(252 +253*n +55*n^2)*a(n) = 3*(n+4)*(n+5)*(141120 + 362152*n + 373054*n^2 + 192647*n^3 + 52441*n^4 + 7161*n^5 + 385*n^6)*a(n-1) + n*(n-1)*(5738880 + 14311976*n + 14466242*n^2 + 7579175*n^3 + 2170343*n^4 + 322289*n^5 + 19415*n^6)*a(n-2) - 32*(n-1)^2*n^2*(n-2)*(n+1)*(560 + 363*n + 55*n^2)*a(n-3); a(-1)=a(0)=1, a(1)=2. (End)
a(n) = S(5,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 9 * 2^(5*n + 27) / (sqrt(5) * Pi^2 * n^12). - Vaclav Kotesovec, Apr 01 2021
a(n) = Sum_{k=0..n} A056941(n, k) (row sums of triangle A056941). - G. C. Greubel, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 29 2016