A005363 Hoggatt sequence with parameter d=5.
1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, 566087847780250, 10006446665899330, 181938461947322284, 3393890553702212368, 64807885247524512668, 1264344439859632559216
Offset: 0
Keywords
References
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..681
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
Programs
-
Magma
A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >; A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >; [A005363(n): n in [0..40]]; // G. C. Greubel, Nov 14 2022
-
Maple
a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1): seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021 # The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - N. J. A. Sloane, Mar 27 2021 v5 := proc(n) local t1,t2,t3,t4,t5; if n=0 then 1 elif n=1 then 2 elif n=2 then 8 else t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2); t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6); t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6); t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2); t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3); t5/t1; fi; end; [seq(v5(n), n=0..20)];
-
Mathematica
A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* Richard L. Ollerton, Sep 12 2006 *)
-
SageMath
def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1)) [A005363(n) for n in range(51)] # G. C. Greubel, Nov 14 2022
Formula
From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric5F4([-4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5], -1).
(n+4)*(n+5)^2*(n+6)*(n+7)*(n+8)*(252 +253*n +55*n^2)*a(n) = 3*(n+4)*(n+5)*(141120 + 362152*n + 373054*n^2 + 192647*n^3 + 52441*n^4 + 7161*n^5 + 385*n^6)*a(n-1) + n*(n-1)*(5738880 + 14311976*n + 14466242*n^2 + 7579175*n^3 + 2170343*n^4 + 322289*n^5 + 19415*n^6)*a(n-2) - 32*(n-1)^2*n^2*(n-2)*(n+1)*(560 + 363*n + 55*n^2)*a(n-3); a(-1)=a(0)=1, a(1)=2. (End)
a(n) = S(5,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 9 * 2^(5*n + 27) / (sqrt(5) * Pi^2 * n^12). - Vaclav Kotesovec, Apr 01 2021
Extensions
More terms from Sean A. Irvine, May 29 2016
Comments