cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005388 Number of degree-n permutations of order a power of 2.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0

Views

Author

Keywords

Comments

Differs from A053503 first at n=32. - Alois P. Heinz, Feb 14 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    f:= func< x | Exp( (&+[x^(2^j)/2^j: j in [0..14]]) ) >;
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Nov 17 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..ilog2(n))))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    max = 23; CoefficientList[ Series[ Exp[ Sum[x^2^m/2^m, {m, 0, max}]], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Sep 10 2013 *)
  • SageMath
    def f(x): return exp(sum(x^(2^j)/2^j for j in range(15)))
    def A005388_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A005388_list(40) # G. C. Greubel, Nov 17 2022

Formula

E.g.f.: exp(Sum_{m>=0} x^(2^m)/2^m).
E.g.f.: 1/Product_{k>=1} (1 - x^(2*k-1))^(mu(2*k-1)/(2*k-1)), where mu() is the Moebius function. - Seiichi Manyama, Jul 06 2024