cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A053505 Number of degree-n permutations of order dividing 30.

Original entry on oeis.org

1, 1, 2, 6, 18, 90, 540, 3060, 20700, 145980, 1459800, 13854600, 140059800, 1514748600, 15869034000, 285268878000, 4109761962000, 59488383690000, 935767530036000, 13364309726748000, 240338216104020000, 4540941256642020000, 79739974380153240000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 5, 6, 10, 15, 30])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 5, 6, 10, 15, 30}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^5/5 +x^6/6 + x^10/10 +x^15/15 +x^30/30], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^3/3 +x^5/5 + x^6/6 +x^10/10 +x^15/15 +x^30/30) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^5/5 + x^6/6 + x^10/10 + x^15/15 + x^30/30).

A052501 Number of permutations sigma such that sigma^5=Id; degree-n permutations of order dividing 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 25, 145, 505, 1345, 3025, 78625, 809425, 4809025, 20787625, 72696625, 1961583625, 28478346625, 238536558625, 1425925698625, 6764765838625, 189239120970625, 3500701266525625, 37764092547420625, 288099608198025625
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) = a(n-1) + (1 + a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1..floor(n/p)} (n!/(j!*(n-p*j)!*(p^j))).
These are the telephone numbers T^(5)n of [Artioli et al., p. 7]. - _Eric M. Schmidt, Oct 12 2017

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=1),Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 30; CoefficientList[ Series[ Exp[x + x^5/5], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 15 2012, after e.g.f. *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^5/5) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^5/5), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^5/5).
a(n+5) = a(n+4) + (24 +50*n +35*n^2 +10*n^3 +n^4)*a(n), with a(0)= ... = a(4) = 1.
a(n) = a(n-1) + a(n-5)*(n-1)!/(n-5)!.
a(n) = Sum_{j = 0..floor(n/5)} n!/(5^j * j! * (n-5*j)!).
a(n) = A059593(n) + 1.

A053496 Number of degree-n permutations of order dividing 6.

Original entry on oeis.org

1, 1, 2, 6, 18, 66, 396, 2052, 12636, 91548, 625176, 4673736, 43575192, 377205336, 3624289488, 38829340656, 397695226896, 4338579616272, 54018173703456, 641634784488288, 8208962893594656, 113809776294348576, 1526808627197721792, 21533423236302943296
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^3/3 +x^6/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 6])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_] := a[n] = If[n<0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 6}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^6/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^2/2+x^3/3+x^6/6) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x +x^2/2 +x^3/3 +x^6/6).
D-finite with recurrence a(n) -a(n-1) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 04 2023

A053497 Number of degree-n permutations of order dividing 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 721, 5761, 25921, 86401, 237601, 570241, 1235521, 892045441, 13348249201, 106757164801, 604924594561, 2722120577281, 10344007402561, 34479959558401, 24928970490633601, 546446134633639681, 6281586217487489041, 50248618811434961281
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), A293588 (m=6), this sequence (m=7).
Column k=7 of A008307.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 31); Coefficients(R!(Laplace( Exp(x + x^7/7) ))); // G. C. Greubel, May 14 2019, Mar 07 2021
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 7])))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^7/7], {x, 0, 24}], x]*Range[0, 24]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^7/7) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    f=factorial; [sum(f(n)/(7^j*f(j)*f(n-7*j)) for j in (0..n/7)) for n in (0..30)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^7/7).
a(n) = Sum_{k=0..floor(n/7)} n!/(7^k*k!*(n-7*k)!). - G. C. Greubel, Mar 07 2021

A053499 Number of degree-n permutations of order dividing 9.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 3568144263578808757678251
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Differs from A218003 first at n=27. - Alois P. Heinz, Jan 25 2014

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3 + x^9/9) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 3, 9])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^3/3+x^9/9], {x, 0, 30}], x]*Range[0, 30]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^3/3 + x^9/9) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3 + x^9/9), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^3/3 + x^9/9).

A053502 Number of degree-n permutations of order dividing 12.

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 576, 3312, 21456, 152784, 1237536, 9984096, 133494912, 1412107776, 16369357824, 206123325696, 2866280276736, 36809077162752, 592066290710016, 8800038127378944, 136876273991755776, 2197453620220010496, 37915306084793106432
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 12])))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 12}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^4/4 +x^6/6 + x^12/12], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12).

A053498 Number of degree-n permutations of order dividing 8.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 607251736576, 7244686764032, 101611422797824, 1170362064019456, 19281174853615616, 261583327556386816, 4084459360167657472, 54366023748591386624
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8).

A053504 Number of degree-n permutations of order dividing 24.

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 576, 3312, 26496, 198144, 1691136, 14973696, 193370112, 2034809856, 25087186944, 313539434496, 4421478721536, 58307347556352, 915011420737536, 13553664911437824, 240637745416421376, 3965015057937924096
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 8, 12, 24])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 8, 12, 24}}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
    With[{nn=30},CoefficientList[Series[Exp[Total[x^#/#&/@Divisors[24]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    N=30; x='x+O('x^N);
    Vec(serlaplace(exp(sumdiv(24, d, x^d/d)))) \\ Gheorghe Coserea, May 11 2017
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^8/8 + x^12/12 + x^24/24).

A053500 Number of degree-n permutations of order dividing 10.

Original entry on oeis.org

1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^5/5 + x^10/10).

A053501 Number of degree-n permutations of order dividing 11.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^11/11) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^11/11], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • Maxima
    a(n):=n!*sum(if mod(11*k-n,10)=0 then binomial(k,(11*k-n)/10)*(11)^((k-n)/10)/k! else 0,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^11/11) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^11/11), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^11/11).
a(n) = n!*Sum_{k=1..n} (if mod(11*k-n,10)=0 then C(k,(11*k-n)/10)*(11)^((k-n)/10)/k!, else 0), n>0. - Vladimir Kruchinin, Sep 10 2010
Showing 1-10 of 16 results. Next